Despite the multiple definitions currently used to express enteric methane emissions from ruminants, no consensus has been reached on the most appropriate definition. The objective of the present study was to explore alternative trait definitions reflecting animal-level differences in enteric methane emissions in growing cattle. It is likely that no single methane trait definition will be best suited to all intended use cases, but at least knowing the relationships between the different traits may help inform the selection process.
View Article and Find Full Text PDFAneuploidy, a genetic condition characterised by the deletion (monosomy) or duplication (trisomy) of a chromosome, has been extensively studied in humans, particularly in the context of trisomy on chromosome 21, also known as Down syndrome. Research on autosomal aneuploidy in live-born cattle has been limited to case reports, resulting in a lack of prevalence estimates of aneuploidy in cattle. Furthermore, the viability or lethality of aneuploidy on specific autosomes in cattle has not been well documented.
View Article and Find Full Text PDFAneuploidy is a genetic condition characterized by the loss or gain of one or more chromosomes. Aneuploidy affecting the sex chromosomes can lead to infertility in otherwise externally phenotypically normal cattle. Early identification of cattle with sex chromosomal aneuploidy is important to minimize the costs associated with rearing infertile cattle and futile breeding attempts.
View Article and Find Full Text PDFGenetic selection has been identified as a promising approach for reducing enteric methane (CH4) emissions; a prerequisite for genetic evaluations; however, these are estimates of the necessary genetic parameters based on a population representative of where the genetic evaluations will be used. The objective of this study was, therefore, to derive genetic parameters for a series of definitions of CH4, carbon dioxide (CO2), and dry matter intake (DMI) as well as genetic correlations between CH4, CO2, and DMI in a bid to address the paucity of studies involving methane emissions measured in beef cattle using GreenFeed systems. Lastly, estimated breeding values (EBV) were generated for nine alternative definitions of CH4 using the derived genetic parameters; the EBV were validated against both phenotypic performance (adjusted for non-genetic effects) and the Legarra and Reverter method comparing EBV generated for a subset of the dataset compared to EBV generated from the entire dataset.
View Article and Find Full Text PDFA fully functional myostatin gene inhibits muscle fiber growth. The objective of the present study was to quantify the association between 21 known myostatin mutations with both calving and carcass traits in 12 cattle breeds. The myostatin genotypes of 32,770 dam-progeny combinations were used in the association analysis of calving dystocia, with the genotypes of 129,803 animals used in the mixed model association analyses of carcass weight, conformation, and fat score.
View Article and Find Full Text PDFRumen methanogenesis results in the loss of 6% to 10% of gross energy intake in cattle and globally is the single most significant source of anthropogenic methane (CH4) emissions. The purpose of this study was to analyze greenhouse gas traits recorded in a commercial feedlot unit to gain an understanding into the relationships between greenhouse gas traits and production traits. Methane and carbon dioxide (CO2) data recorded via multiple GreenFeed Emission Monitoring (GEM), systems as well as feed intake, live weight, ultrasound scanning data, and slaughter data were available on 1,099 animals destined for beef production, of which 648 were steers, 361 were heifers, and 90 were bulls.
View Article and Find Full Text PDFSexual dimorphism, the phenomenon whereby males and females of the same species are distinctive in some aspect of appearance or size, has previously been documented in cattle for traits such as growth rate and carcass merit using a quantitative genetics approach. No previous study in cattle has attempted to document sexual dimorphism at a genome level; therefore, the objective of the present study was to determine whether genomic regions associated with size and muscularity in cattle exhibited signs of sexual dimorphism. Analyses were undertaken on 10 linear-type traits that describe the muscular and skeletal characteristics of both males and females of five beef cattle breeds: 1,444 Angus (AA), 6,433 Charolais (CH), 1,129 Hereford, 8,745 Limousin (LM), and 1,698 Simmental.
View Article and Find Full Text PDFBackground: Temperament traits are of high importance across species. In humans, temperament or personality traits correlate with psychological traits and psychiatric disorders. In cattle, they impact animal welfare, product quality and human safety, and are therefore of direct commercial importance.
View Article and Find Full Text PDFReducing the incidence of both the degree of assistance required at calving, as well as the extent of perinatal mortality (PM) has both economic and societal benefits. The existence of heritable genetic variability in both traits signifies the presence of underlying genomic variability. The objective of the present study was to locate regions of the genome, and by extension putative genes and mutations, that are likely to be underpinning the genetic variability in direct calving difficulty (DCD), maternal calving difficulty (MCD), and PM.
View Article and Find Full Text PDFLinear type traits describing the skeletal characteristics of an animal are moderately to strongly genetically correlated with a range of other performance traits in cattle including feed intake, reproduction traits and carcass merit; thus, type traits could also provide useful insights into the morphological differences among animals underpinning phenotypic differences in these complex traits. The objective of the present study was to identify genomic regions associated with five subjectively scored skeletal linear traits, to determine if these associated regions are common in multiple beef and dairy breeds, and also to determine if these regions overlap with those proposed elsewhere to be associated with correlated performance traits. Analyses were carried out using linear mixed models on imputed whole genome sequence data separately in 1,444 Angus, 1,129 Hereford, 6,433 Charolais, 8,745 Limousin, 1,698 Simmental, and 4,494 Holstein-Friesian cattle, all scored for the linear type traits.
View Article and Find Full Text PDFBackground: Linear type traits, which reflect the muscular characteristics of an animal, could provide insight into how, in some cases, morphologically very different animals can yield the same carcass weight. Such variability may contribute to differences in the overall value of the carcass since primal cuts vary greatly in price; such variability may also hinder successful genome-based association studies. Therefore, the objective of our study was to identify genomic regions that are associated with five muscularity linear type traits and to determine if these significant regions are common across five different breeds.
View Article and Find Full Text PDFWhile many association studies exist that have attempted to relate genomic markers to phenotypic performance in cattle, very few have considered gestation length as a phenotype, and of those that did, none used whole genome sequence data from multiple breeds. The objective of the present study was therefore to relate imputed whole genome sequence data to estimated breeding values for gestation length using 22,566 sires (representing 2,262,706 progeny) of multiple breeds [Angus (AA), Charolais (CH), Holstein-Friesian (HF), and Limousin (LM)]. The associations were undertaken within breed using linear mixed models that accounted for genomic relatedness among sires; a separate association analysis was undertaken with all breeds analysed together but with breed included as a fixed effect in the model.
View Article and Find Full Text PDFBackground: Quantitative genetic studies suggest the existence of variation at the genome level that affects the ability of cattle to resist to parasitic diseases. The objective of the current study was to identify regions of the bovine genome that are associated with resistance to endo-parasites.
Methods: Individual cattle records were available for Fasciola hepatica-damaged liver from 18 abattoirs.
Copy number variants (CNVs) are a form of genomic variation that changes the structure of the genome through deletion or duplication of stretches of DNA. The objective of the present study was to characterize CNVs in a large multibreed population of beef and dairy bulls. The CNVs were called on the autosomes of 5,551 cattle from 22 different beef and dairy breeds, using 2 freely available software suites, QuantiSNP and PennCNV.
View Article and Find Full Text PDFStature is affected by many polymorphisms of small effect in humans . In contrast, variation in dogs, even within breeds, has been suggested to be largely due to variants in a small number of genes. Here we use data from cattle to compare the genetic architecture of stature to those in humans and dogs.
View Article and Find Full Text PDFDomestication and the subsequent selection of animals for either economic or morphological features can leave a variety of imprints on the genome of a population. Genomic regions subjected to high selective pressures often show reduced genetic diversity and frequent runs of homozygosity (ROH). Therefore, the objective of the present study was to use 42,182 autosomal SNPs to identify genomic regions in 3,191 sheep from six commercial breeds subjected to selection pressure and to quantify the genetic diversity within each breed using ROH.
View Article and Find Full Text PDFRuns of homozygosity (ROH), uninterrupted stretches of homozygous genotypes resulting from parents transmitting identical haplotypes to their offspring, have emerged as informative genome-wide estimates of autozygosity (inbreeding). We used genomic profiles based on 698 K single nucleotide polymorphisms (SNPs) from nine breeds of domestic cattle () and the European bison () to investigate how ROH distributions can be compared within and among species. We focused on two length classes: 0.
View Article and Find Full Text PDFBackground: Calving difficulty and perinatal mortality are prevalent in modern-day cattle production systems. It is well-established that there is a genetic component to both traits, yet little is known about their underlying genomic architecture, particularly in beef breeds. Therefore, we performed a genome-wide association study using high-density genotypes to elucidate the genomic architecture of these traits and to identify regions of the bovine genome associated with them.
View Article and Find Full Text PDFBackground: Runs of homozygosity (ROH) are contiguous lengths of homozygous genotypes that are present in an individual due to parents transmitting identical haplotypes to their offspring. The extent and frequency of ROHs may inform on the ancestry of an individual and its population. Here we use high density (n = 777,962) bi-allelic SNPs in a range of cattle breed samples to correlate ROH with the pedigree-based inbreeding coefficients and to validate subsequent analyses using 54,001 SNP genotypes.
View Article and Find Full Text PDF