Coastal wetlands, such as the Everglades, are increasingly being exposed to stressors that have the potential to modify their existing ecological processes because of global climate change. Their soil microbiomes include a population of organisms important for biogeochemical cycling, but continual stresses can disturb the community's composition, causing functional changes. The Everglades feature wetlands with varied salinity levels, implying that they contain microbial communities with a variety of salt tolerances and microbial functions.
View Article and Find Full Text PDFCurrent technologies have increased the sensitivity for analyzing forensic DNA samples, especially those considered "touch samples." Because of this, there has been an increase in the number of forensic mixtures-two or more contributors within a single sample-submitted to the crime laboratories. Therefore, the need to resolve these mixtures has increased as well.
View Article and Find Full Text PDFIntegrated knowledge on phenotype, physiology, and genomic adaptations is required to understand the effects of climate on evolution. The functional genomic basis of organismal adaptation to changes in the abiotic environment, its phenotypic consequences, and its possible convergence across vertebrates are still understudied. In this study, we use a comparative approach to verify predicted gene functions for vertebrate thermal adaptation with observed functions underlying repeated genomic adaptations in response to elevation in the lizard .
View Article and Find Full Text PDF