Publications by authors named "Dehui Wan"

As robots undertake increasingly complex tasks, such as real-time visible image sensing, environmental analysis, and weather monitoring under harsh conditions, design of an appropriate robot shell has become crucial to ensure the reliability of internal electronic components. Several key factors, such as the cooling efficiency, visible transparency, mechanical performance, and weathering resistance of the shell material, are proposed in this research to ensure future robot functionality. In this study, a polymeric double-layered shell for fabrication by stereolithography 3D printing was designed, featuring a porous outer layer and a spherical inner shell.

View Article and Find Full Text PDF

The stimulator of interferon genes (STING) pathway is crucial for tumor immunity, leading to the exploration of STING agonists as potential immunotherapy adjuvants. However, their clinical application faces obstacles including poor pharmacokinetics, transient activation, and an immunosuppressive tumor microenvironment (TME). Addressing these limitations, our study aims to develop an injectable silk fibroin hydrogel-based in situ vaccine.

View Article and Find Full Text PDF

For the first time, the dominant magnetoelectric activity of ZIF-67-derived carbonaceous microparticles embedded with Co nanoparticles and distinctive magnetothermal effect of MIL-88B-derived FeO nanocubes decorated on carbonaceous microrods, respectively, were explored to be controlled by the structure of the MOF-derived electrically conductive carbonaceous matrix and metal nanoparticles.

View Article and Find Full Text PDF

Microneedle (MN) patches, which allow the extraction of skin interstitial fluid (ISF) without a pain sensation, are powerful tools for minimally invasive biofluid sampling. Herein, an MN-assisted paper-based sensing platform that enables rapid and painless biofluid analysis with ultrasensitive molecular recognition capacity is developed. First, a controllable-swelling MN patch is constructed through the engineering of a poly(ethylene glycol) diacrylate/methacrylated hyaluronic acid hydrogel; it combines rapid, sufficient extraction of ISF with excellent structural integrity.

View Article and Find Full Text PDF
Article Synopsis
  • Surface-enhanced Raman spectroscopy (SERS) biosensors are gaining popularity for their ability to detect substances without labels, providing ultra-high sensitivity and unique molecular identification.
  • This study presents a portable and highly efficient paper-based SERS platform made from cellulose fibers coated with dense gold nanopearls, showing remarkable detection capabilities down to single-molecule levels.
  • The SERS system can identify a range of substances, including clinical drugs and environmental toxins, at extremely low concentrations, making it ideal for applications in personalized medicine and early diagnosis of poisoning.
View Article and Find Full Text PDF

Although surface-enhanced Raman spectroscopy (SERS) can rapidly identify molecular fingerprints and has great potential for analysis, the need for delicate plasmonic substrates and complex laboratory instruments seriously limits its applicability for on-site detection. This paper describes the development of an inexpensive aluminum nanoparticle (AlNP)-decorated paper that functions as a facile SERS-based detection platform (Al-PSERS). Polydopamine-protected AlNPs were chemically synthesized and then simply drop-cast onto a hydrophobic cellulose paper, forming a monolayer AlNP cluster array.

View Article and Find Full Text PDF

Large-area surface-enhanced Raman spectroscopy (SERS) sensing platforms displaying ultrahigh sensitivity and signal uniformity have potentially enormous sensing applicability, but they are still challenging to prepare in a scalable manner. In this study, silver nanopaste (AgNPA) was employed to prepare a wafer-scale, ultrasensitive SERS substrate. The self-generated, high-density Ag nanocracks (NCKs) with small gaps could be created on Si wafers via a spin-coating process, and provided extremely abundant hotspots for SERS analyses with ultrahigh sensitivity-down to the level of single molecules (enhancement factor: ca.

View Article and Find Full Text PDF

Objective: Stromal barriers, such as the abundant desmoplastic stroma that is characteristic of pancreatic ductal adenocarcinoma (PDAC), can block the delivery and decrease the tumour-penetrating ability of therapeutics such as tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), which can selectively induce cancer cell apoptosis. This study aimed to develop a TRAIL-based nanotherapy that not only eliminated the extracellular matrix barrier to increase TRAIL delivery into tumours but also blocked antiapoptotic mechanisms to overcome TRAIL resistance in PDAC.

Design: Nitric oxide (NO) plays a role in preventing tissue desmoplasia and could thus be delivered to disrupt the stromal barrier and improve TRAIL delivery in PDAC.

View Article and Find Full Text PDF

Healthcare-associated infections are common causes of morbidity and mortality. Advanced nanotechnology provides a means of overcoming this problem, but it remains challenging to develop universal coating strategies for decorating antimicrobial nanomaterials onto various clinical devices. In this paper, we propose a general silane-based method for immobilizing monolayer metal nanoparticle (NP) arrays onto any type of substrate surface-especially for a diverse range of clinical implantable devices.

View Article and Find Full Text PDF

Much effort has been focused on novel nanomedicine for cancer therapy. However, tumor hypoxia limits the efficacy of various cancer therapeutics. Herein, we constructed a self-sufficient hybrid enzyme-based silk fibroin hydrogel system, consisting of Pt-decorated hollow Ag-Au trimetallic nanocages (HGN@Pt) and glucose oxidase (GOx), to supply O continuously and consume glucose concurrently and, thereby, synergistically enhance the anti-cancer efficacy of a combined starvation and photothermal therapy operating in a hypoxic tumor microenvironment.

View Article and Find Full Text PDF

Urinary tract infections (UTI) represent one of the most common problem within the urological disorders, and it is mainly caused by biofilm formation which leads to bacterial infection. Anti-adhesion and antibacterial agents are two primary mechanisms to prevent biofilm formation; however, current strategies are insufficiently effective. In this study, we developed an effective antibiofilm biodegradable polymer with high biocompatibility.

View Article and Find Full Text PDF

The localized surface plasmon resonance of plasmonic nanoparticles (NPs) can be coupled with a noble metal substrate (S) to induce a localized augmented electric field (E-field) concentrated at the NP-S gap. Herein, we analyzed the fundamental near-field properties of metal NPs on diverse substrates numerically (using the 3D finite-difference time-domain method) and experimentally [using surface-enhanced Raman scattering (SERS)]. We systematically examined the effects of plasmonic NPs on noble metals (Ag and Au), non-noble metals (Al, Ti, Cu, Fe, and Ni), semiconductors (Si and Ge), and dielectrics (TiO, ZnO, and SiO) as substrates.

View Article and Find Full Text PDF

Neural stem cells (NSCs) represent significant potential and promise in the treatment of neurodegenerative diseases and nerve injuries. An efficient methodology or platform that can help in specifically directing the stem cell fate is important and highly desirable for future clinical therapy. In this study, a biodegradable electrical conductive film composed of an oxidative polymerized carboxyl-capped aniline pentamer (CCAP) and ring-opening polymerized tetra poly(d,l-lactide) (4a-PLA) was designed with the addition of the dopant, namely chondroitin sulfate.

View Article and Find Full Text PDF

Antiangiogenic therapy is widely administered in many cancers, and the antiangiogenic drug sorafenib offers moderate benefits in advanced hepatocellular carcinoma (HCC). However, antiangiogenic therapy can also lead to hypoxia-driven angiogenesis and immunosuppression in the tumor microenvironment (TME) and metastasis. Here, we report the synthesis and evaluation of NanoMnSor, a tumor-targeted, nanoparticle drug carrier that efficiently codelivers oxygen-generating MnO and sorafenib into HCC.

View Article and Find Full Text PDF

A disturbance of reactive oxygen species (ROS) homeostasis may cause the pathogenesis of many diseases. Inspired by natural photosynthesis, this work proposes a photo-driven H-evolving liposomal nanoplatform (Lip NP) that comprises an upconversion nanoparticle (UCNP) that is conjugated with gold nanoparticles (AuNPs) via a ROS-responsive linker, which is encapsulated inside the liposomal system in which the lipid bilayer embeds chlorophyll a (Chla). The UCNP functions as a transducer, converting NIR light into upconversion luminescence for simultaneous imaging and therapy in situ.

View Article and Find Full Text PDF

This paper describes the fabrication of paper-based plasmonic refractometric sensors through the embedding of metal nanoparticles (NPs) onto flexible papers using reversal nanoimprint lithography. The NP-embedded papers can serve as gas sensors for the detection of volatile biogenic amines (BAs) released from spoiled food. Commercial inkjet papers were employed as sensor substrates-their high reflectance (>80%) and smooth surfaces (roughness: ca.

View Article and Find Full Text PDF

This paper describes the synthesis of near-infrared (NIR)-absorbing gold nanoframes (GNFs) and a systematic study comparing their physiological stability and biocompatibility with those of hollow Au-Ag nanoshells (GNSs), which have been used widely as photothermal agents in biomedical applications because of their localized surface plasmon resonance (LSPR) in the NIR region. The GNFs were synthesized in three steps: galvanic replacement, Au deposition, and Ag dealloying, using silver nanospheres (SNP) as the starting material. The morphology and optical properties of the GNFs were dependent on the thickness of the Au coating layer and the degree of Ag dealloying.

View Article and Find Full Text PDF

The nonspecific distribution of therapeutic agents and nontargeted heating commonly produce undesirable side effects during cancer treatment since the optimal timing of triggering the carrier systems is unknown. This work proposes a multifunctional liposomal system that can intracellularly and simultaneously deliver the therapeutic drug doxorubicin (DOX), heat, and a bubble-generating agent (ammonium bicarbonate, ABC) into targeted tumor cells to have a cytotoxic effect. Gold nanocages that are encapsulated in liposomes effectively convert near-infrared light irradiation into localized heat, which causes the decomposition of ABC and generates CO2 bubbles, rapidly triggering the release of DOX.

View Article and Find Full Text PDF

This paper describes a systematic investigation of the phenomenon of white-light-induced heating in silk fibroin films embedded with gold nanoparticles (Au NPs). The Au NPs functioned to develop an ultrahigh broadband absorber, allowing white light to be used as a source for photothermal generation. With an increase of the Au content in the composite films, the absorbance was enhanced significantly around the localized surface plasmon resonance (LSPR) wavelength, while non-LSPR wavelengths were also increased dramatically.

View Article and Find Full Text PDF

Sorafenib is a tyrosine kinase inhibitor that has recently been shown to be a potential antifibrotic agent. However, a narrow therapeutic window limits the clinical use and therapeutic efficacy of sorafenib. Herein, we have developed and optimized nanoparticle (NP) formulations prepared from a mixture of poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) (PEG-PLGA) copolymers with poly(lactic-co-glycolic acid) (PLGA) for the systemic delivery of sorafenib into the fibrotic livers of CCl4-induced fibrosis mouse models.

View Article and Find Full Text PDF

Repeated cancer treatments are common, owing to the aggressive and resistant nature of tumors. This work presents a chitosan (CS) derivative that contains self-doped polyaniline (PANI) side chains, capable of self-assembling to form micelles and then transforming into hydrogels driven by a local change in pH. Analysis results of small-angle X-ray scattering indicate that the sol-gel transition of this CS derivative may provide the mechanical integrity to maintain its spatial stability in the microenvironment of solid tumors.

View Article and Find Full Text PDF

We report our observation of changes to the crystallinity or morphology during seed-mediated growth of Au nanocrystals. When single-crystal Au seeds with a spherical or rod-like shape were treated with a chemical species such as S2O3(2-) ions, twin defects were developed during the growth process to generate multiply twinned nanostructures. X-ray photoelectron spectroscopy analysis indicated that the S2O3(2-) ions were chemisorbed on the surfaces of the seeds during the treatment.

View Article and Find Full Text PDF

The title compound, C25H22NO2P, was synthesized in high yield by a three-component Kabachnik-Fields reaction of diphenylphosphine oxide, salicylaldehyde and aniline in dry toluene at room temperature. It precipitates as racemic crystals, in which strong hydrogen bonds between the hydroxy group and the P=O group of a neighbouring molecule form one-dimensional heterochiral chains along the crystallographic a axis, with an O···O separation of 2.568 (2) Å.

View Article and Find Full Text PDF

Silver octahedra with edge lengths controlled in the range of 20-72 nm were synthesized via seed-mediated growth. The key to the success of this synthesis is the use of single-crystal Ag seeds with uniform and precisely controlled sizes to direct the growth and the use of citrate as a selective capping agent for the {111} facets. Our mechanistic studies demonstrated that Ag seeds with both cubic and quasi-spherical shapes could evolve into octahedra.

View Article and Find Full Text PDF

A facile, robust approach to the synthesis of Au cubic nanoframes is described. The synthesis involves three major steps: 1) preparation of Au-Ag alloyed nanocages using a galvanic replacement reaction between Ag nanocubes and HAuCl4 ; 2) deposition of thin layers of pure Au onto the surfaces of the nanocages by reducing HAuCl4 with ascorbic acid, and; 3) formation of Au cubic nanoframes through a dealloying process with HAuCl4 . The key to the formation of Au cubic nanoframes is to coat the surfaces of the Au-Ag nanocages with sufficiently thick layers of Au before they are dealloyed.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionjkodli7o7lj85ap08om4dqvtbmqlckfi): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once