Publications by authors named "Dehui Qiu"

G-quadruplexes (G4s) are challenging targets for chemical biology interventions, notably because of their dynamic topological polymorphism. We found that the antibiotic small- molecule colistin (COL) interacts specifically with a single subtype of G4 structures, the so-called parallel G4s. This interaction triggers the aggregation of the G4/COL complexes in a structure-specific manner, which can thus be separated from the bulk solution by centrifugation.

View Article and Find Full Text PDF

Despite the unique advantage of the isothermal exponential amplification reaction (EXPAR) for the rapid detection of short nucleic acids, it severely suffers from the drawback of sequence-dependent amplification bias, mainly arising from the secondary structures of the EXPAR template under the commonly used reaction temperature (55 °C). As such, the limits of detection (LOD) for different target sequences may vary considerably from aM to nM. Here we report a sequence-generic exponential amplification reaction (SG-EXPAR) that eliminates sequence-dependent amplification bias and achieves similar amplification performance for different targets with generally sub-fM LODs.

View Article and Find Full Text PDF
Article Synopsis
  • Formamidopyrimidine DNA glycosylase (FPG) is an important enzyme that repairs DNA by targeting damaged bases like 8-oxoG.
  • A new integrated detection method was developed using magnetic beads, which includes an 8-oxoG probe for FPG recognition and a unique chimeric peptide-DNA mimetic enzyme (CPDzyme) for amplifying signal strength.
  • This method allows for precise detection of FPG activity in a range of 0.2-20 U/mL, with a low detection limit, and has been successfully tested on human serum and bacterial samples, offering a powerful alternative to existing commercial assays.
View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the importance of sublingual vein features in Traditional Chinese Medicine (TCM) tongue diagnosis, highlighting how they reflect blood circulation and inform treatment decisions.
  • It addresses the challenges of accurately extracting these features due to limited datasets and noise interference from other elements.
  • The authors introduce a new segmentation method using a Polyp-PVT network and a Swin-Transformer for improved extraction of sublingual vein features, supported by a comprehensive dataset, showing superior performance compared to current techniques.
View Article and Find Full Text PDF

Rare earth-doped nanoparticles (RENPs) are promising biomaterials with substantial potential in biomedical applications. Their multilayered core-shell structure design allows for more diverse uses, such as orthogonal excitation. However, the typical synthesis strategies-one-pot successive layer-by-layer (LBL) method and seed-assisted (SA) method-for creating multilayered RENPs show notable differences in spectral performance.

View Article and Find Full Text PDF

Hemin/G-quadruplex (hG4) complexes are frequently used as artificial peroxidase-like enzymatic systems (termed G4 DNAzymes) in many biosensing applications, in spite of a rather low efficiency, notably in terms of detection limits. To tackle this issue, we report herein a strategy in which hemin is chemically modified with the amino acids found in the active site of parent horseradish peroxidase (HRP), with the aim of recreating an environment conducive to high catalytic activity. When hemin is conjugated with a single arginine, it associates with G4 to create an arginine-hemin/G4 (R-hG4) DNAzyme that exhibits improved catalytic performances, characterized by kinetic analysis and DFT calculations.

View Article and Find Full Text PDF

Biomimetic enzymes have emerged as ideal alternatives to natural enzymes, and there is considerable interest in designing biomimetic enzymes with enhanced catalytic performance to address the low activity of the current biomimetic enzymes. In this study, we proposed a meaningful strategy for constructing an efficient peroxidase-mimicking catalyst, called HhG-MOF, by anchoring histidine (H) and dual hemin-G-quadruplex DNAzyme (double hemin covalently linked to 3' and 5' terminals of G-quadruplex DNA, short as hG) to a mesoporous metal-organic framework (MOF). This design aims to mimic the microenvironment of natural peroxidase.

View Article and Find Full Text PDF

Nanomaterials excel in mimicking the structure and function of natural enzymes while being far more interesting in terms of structural stability, functional versatility, recyclability, and large-scale preparation. Herein, the story assembles hemin, histidine analogs, and G-quadruplex DNA in a catalytically competent supramolecular assembly referred to as assembly-activated hemin enzyme (AA-heminzyme). The catalytic properties of AA-heminzyme are investigated both in silico (by molecular docking and quantum chemical calculations) and in vitro (notably through a systematic comparison with its natural counterpart horseradish peroxidase, HRP).

View Article and Find Full Text PDF

G-quadruplex (G4)/hemin DNAzyme is a promising candidate to substitute horseradish peroxidase in biosensing systems, especially for the detection of nucleic acids. However, the relatively suboptimal catalytic capacity limits its potential applications. This makes it imperative to develop an ideal signal for the construction of highly sensitive biosensing platforms.

View Article and Find Full Text PDF

Given the complexity of the tumor microenvironment, multiple strategies are being explored to tackle hypoxic tumors. The most efficient strategies combine several therapeutic modalities and typically requires the development of multifunctional nanocomposites through sophisticated synthetic procedures. Herein, the G-quadruplex (G4)-forming sequence AS1411-A (d[(G T) TG(TG ) A]) is used for both its anti-tumor and biocatalytic properties when combined with hemin, increasing the production of O ca.

View Article and Find Full Text PDF

Chimeric peptide-DNAzyme (CPDzyme) is a novel artificial peroxidase that relies on the covalent assembly of DNA, peptides, and an enzyme cofactor in a single scaffold. An accurate control of the assembly of these different partners allows for the design of the CPDzyme prototype G4-Hemin-KHRRH, found to be >2000-fold more active (in terms of conversion number ) than the corresponding but non-covalent G4/Hemin complex and, more importantly, >1.5-fold more active than the corresponding native peroxidase (horseradish peroxidase) when considering a single catalytic center.

View Article and Find Full Text PDF

Just-in-time evaluation of drug resistance in situ will greatly facilitate the achievement of precision cancer therapy. The rapid elevation of reactive oxygen species (ROS) is the key to chemotherapy. Hence, suppressed ROS production is an important marker for chemotherapy drug resistance.

View Article and Find Full Text PDF

Biocatalytic transformations in living cells, such as enzymatic cascades, function effectively in spatially confined microenvironments. However, mimicking enzyme catalytic cascade processes is challenging. Herein, we report a new dual-Hemin-G-quadruplex (dHemin-G4) DNAzyme with high catalytic activity over noncovalent G4/Hemin and monocovalent counterparts (G4-Hemin and Hemin-G4) by covalently linking hemin to both ends of an intramolecular G4.

View Article and Find Full Text PDF

A high catalytic efficiency associated with a robust chemical structure are among the ultimate goals when developing new biocatalytic systems for biosensing applications. To get ever closer to these goals, we report here on a combination of metal-organic framework (MOF)-based nanozymes and a G-quadruplex (G4)-based catalytic system known as G4-DNAzyme. This approach aims at combining the advantages of both partners (chiefly, the robustness of the former and the modularity of the latter).

View Article and Find Full Text PDF

G-quadruplex/hemin (G4/hemin) DNAzymes are biosensing systems, but their application remains limited by an overall low activity and a rather high level of unwarranted background reactions. Here, these issues were addressed through the rational design of F3T-azaC-hemin, a G4-based construct in which the hemin is covalently linked to the G4 core and its binding site flanked with a nucleotide activator, here d(T-azaC). This design led to a G4-DNAzyme whose performances have been ca.

View Article and Find Full Text PDF

The G-quadruplex (G4) resolvase RNA helicase associated with AU-rich element (RHAU) possesses the ability to unwind G4 structures in both DNA and RNA molecules. Previously, we revealed that RHAU plays a critical role in embryonic heart development and postnatal heart function through modulating mRNA translation and stability. However, whether RHAU functions to resolve DNA G4 in the regulation of cardiac physiology is still elusive.

View Article and Find Full Text PDF

The i-motif DNA, also known as i-DNA, is a non-canonical DNA secondary structure formed by cytosine-rich sequences, consisting of two intercalated parallel-stranded duplexes held together by hemi-protonated cytosine-cytosine (C:C ) base pairs. The growing interest in the i-DNA structure as a target in anticancer therapy increases the need for tools for a rapid and meaningful interpretation of the spectroscopic data of i-DNA samples. Herein, we analyzed the circular dichroism (CD) and thermal difference UV-absorbance spectra (TDS) of 255 DNA sequences by means of multivariate data analysis, aiming at unveiling peculiar spectral regions that could be used as diagnostic features during the analysis of i-DNA-forming sequences.

View Article and Find Full Text PDF

Recent studies indicate that i-DNA, a four-stranded cytosine-rich DNA also known as the i-motif, is actually formed in vivo; however, a systematic study on sequence effects on stability has been missing. Herein, an unprecedented number of different sequences (271) bearing four runs of 3-6 cytosines with different spacer lengths has been tested. While i-DNA stability is nearly independent on total spacer length, the central spacer plays a special role on stability.

View Article and Find Full Text PDF

Uracil-DNA glycosylase (UDG) is a protein enzyme that initiates the base excision repair pathway for maintaining genome stability. Sensitive detection of UDG activity is important in the study of many biochemical processes and clinical applications. Here, a method for detecting UDG is proposed by integrating magnetic separation and real-time ligation chain reaction (LCR).

View Article and Find Full Text PDF

G-quadruplex/Hemin (G4/Hemin) complex has been widely used in biocatalysis and analytical applications. Meanwhile, compared with natural proteinous enzyme, its low catalytic activity is still limiting its applications. Even though several methods have been developed to enhance the peroxidation efficiency, the important core of the G4 design based enhancement mechanism is still indistinct.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionpbfp4ibthbp38mv2q24gj4hp4guvsftk): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once