This work reported gold nanoparticles (AuNPs)-based colorimetric immunoassay with the Cu-based metal-organic framework (MOF) to load pyrroloquinoline quinone (PQQ) for the catalytic oxidation of cysteine. In this method, both Cu and PQQ in the MOF could promote the oxidation of inducer cysteine by redox cycling, thus limiting the cysteine-induced aggregation of AuNPs and achieving dual signal amplification. Specifically, the recombinant carcinoembryonic antigen (CEA) targets were anchored on the MOF through the metal coordination interactions between the hexahistidine (His) tag in CEA and the unsaturated Cu sites in MOF.
View Article and Find Full Text PDFHalf-calcined dolomites (HCDs) have been widely used in environmental remediation, medicine, and construction. However, advanced calcination technologies are required to modify their microstructure and thus improve their working performance. Herein, we investigated the effects of a variety of inorganic salts on the decomposition of dolomite based on thermogravimetric, compositional, and morphological analysis.
View Article and Find Full Text PDFOver the past few decades, molecular self-assembly has witnessed tremendous progress in a variety of biosensing and biomedical applications. In particular, self-assembled nanostructures of small organic molecules and peptides with intriguing characteristics (e.g.
View Article and Find Full Text PDFBiosensors (Basel)
November 2022
Electrochemical biosensors generally require the immobilization of recognition elements or capture probes on the electrode surface. This may limit their practical applications due to the complex operation procedure and low repeatability and stability. Magnetically assisted biosensors show remarkable advantages in separation and pre-concentration of targets from complex biological samples.
View Article and Find Full Text PDFNanocatalysts are a promising alternative to natural enzymes as the signal labels of electrochemical biosensors. However, the surface modification of nanocatalysts and sensor electrodes with recognition elements and blockers may form a barrier to direct electron transfer, thus limiting the application of nanocatalysts in electrochemical immunoassays. Electron mediators can accelerate the electron transfer between nanocatalysts and electrodes.
View Article and Find Full Text PDFWe proposed a simple and sensitive strategy for the detection of microRNAs (miRNAs) by converting homogeneous assay into surface-tethered electrochemical analysis. Specifically, the biotinylated detection probes (biotin-DNA-biotin) can trigger the in-situ assembly of tetrameric streptavidin (SA) proteins on an electrode surface via the SA-biotin interactions. The (SA-biotin-DNA-biotin) assemblies electrically insulated the electrode interface, thereby blocking the electron transfer of [Fe(CN)].
View Article and Find Full Text PDFColorimetric immunoassays for tumor marker detection have attracted considerable attention due to their simplicity and high efficiency. With the achievements of nanotechnology and nanoscience, nanomaterials-based colorimetric immunoassays have been demonstrated to be promising alternatives to conventional colorimetric enzyme-linked immunoassays. This review is focused on the progress in colorimetric immunoassays with the signal amplification of nanomaterials, including nanomaterials-based artificial enzymes to catalyze the chromogenic reactions, analyte-induced aggregation or size/morphology change of nanomaterials, nanomaterials as the carriers for loading enzyme labels, and chromogenic reactions induced by the constituent elements released from nanomaterials.
View Article and Find Full Text PDFA colorimetric immunoassay has been reported for prostate-specific antigen (PSA) detection with CuO nanoparticles (CuO NPs) as signal labels. The method is based on Cu-catalyzed oxidation of ascorbic acid (AA) by O₂ to depress the formation of colored gold nanoparticles (AuNPs). Specifically, HAuCl₄ can be reduced by AA to produce AuNPs in situ.
View Article and Find Full Text PDFBackground: Prostate-specific antigen (PSA), a serine protease, is a biomarker for preoperative diagnosis and screening of prostate cancer and monitoring of its posttreatment.
Methods: In this work, we reported a colorimetric method for clinical detection of PSA using gold nanoparticles (AuNPs) as the reporters. The method is based on ascorbic acid (AA)-induced in situ formation of AuNPs and Cu-catalyzed oxidation of AA.
Glycoproteins play important roles in a wide variety of biological processes. The change in the concentration levels has been associated with many cancers, as well as other diseases. Thus, rapid, sensitive and selective determination of glycoproteins is much preferred.
View Article and Find Full Text PDFWe report a simple, fast and selective colorimetric assay of adenosine triphosphate (ATP) using unmodified gold nanoparticles (AuNPs) as probes and metal ions as cross-linkers. ATP can be assembled onto the surface of AuNPs through interaction between the electron-rich nitrogen atoms and the electron-deficient surface of AuNPs. Accordingly, Cu2+ ions induce a change in the color and UV/Vis absorbance of AuNPs by coordinating to the triphosphate groups and a ring nitrogen of ATP.
View Article and Find Full Text PDFIn this paper, we report a simple, sensitive and selective colorimetric visualization of dopamine (DA) using dithiobis(succinimidylpropionate) (DSP)-modified gold nanoparticles (AuNPs) as probes and ferric ions as cross-linkers. Via the standard amine coupling reaction between the amino groups of DA and activated carboxyl groups of DSP, DA molecules can be assembled onto the surface of DSP-AuNPs. Accordingly, Fe(3+) ions induce a change of DSP-AuNPs in color and UV-vis absorbance by coordinating to the catechol groups of the anchored DA.
View Article and Find Full Text PDFJ Autom Methods Manag Chem
November 2011
This paper presents the automatic discrimination of geographical origins of milks from Western Yunnan Plateau areas and eastern China by excitation-emission fluorescence spectrometry and chemometrics. Genuine plateau milks (n = 60) and milks from eastern China (n = 89) are scanned in the regions of 180-300 nm for excitation and 200-800 nm for emission. Different options of data analysis are investigated and compared in terms of their performance in discriminating milks of different geographical origins: (1) two-way partial least squares discriminant analysis (PLSDA) based on excitation and emission spectra, respectively; (2) two-way PLSDA based on fusion of excitation and emission spectra; (3) three-way PLSDA based on excitation-emission matrix spectra.
View Article and Find Full Text PDFFourier transform infrared (FTIR) spectroscopy combined with chemometric multivariate methods was proposed to discriminate the type (unfermented and fermented) and predict the age of tuocha tea. Transmittance FTIR spectra ranging from 400 to 4000 cm(-1) of 80 fermented and 98 unfermented tea samples from Yunnan province of China were measured. Sample preparation involved finely grinding tea samples and formation of thin KBr disks (under 120 kg/cm(2) for 5 min).
View Article and Find Full Text PDF