In solid tumors, tumor-associated macrophages (TAMs) commonly accumulate within hypoxic areas. Adaptations to such environments evoke transcriptional changes by the hypoxia-inducible factors (HIFs). While HIF-1α is ubiquitously expressed, HIF-2α appears tissue-specific with consequences of HIF-2α expression in TAMs only being poorly characterized.
View Article and Find Full Text PDFCell stress such as hypoxia elicits adaptive responses, also on the level of mitochondria, and in part is mediated by the hypoxia-inducible factor (HIF) 1α. Adaptation of mitochondria towards acute hypoxic conditions is reasonably well understood, while regulatory mechanisms, especially of respiratory chain assembly factors, under chronic hypoxia remains elusive. One of these assembly factors is transmembrane protein 126B (TMEM126B).
View Article and Find Full Text PDFMacrophages are known for their versatile role in biology. They sense and clear structures that contain exogenous or endogenous pathogen-associated molecular patterns. This process is tightly linked to the production of a mixture of potentially harmful oxidants and cytokines.
View Article and Find Full Text PDFThe RNA-binding protein HuR promotes tumor growth by affecting proliferation, metastasis, apoptosis, and angiogenesis. Although immune cells, especially tumor-associated macrophages, are critical components of the tumor stroma, the influence of HuR in tumors on the recruitment of immune cells remains poorly understood. In the present study, we, therefore, aimed to elucidate the impact of tumor cell HuR on the interaction between tumor cells and macrophages.
View Article and Find Full Text PDFCurr Opin Pharmacol
August 2017
Tumors are composed of tumor cells, nonmalignant cells, and the vascular system. Among them is intense communication via cell-cell contact-dependent mechanisms and/or soluble messengers. In the tumor microenvironment cells often face a certain degree of oxygen and nutrient deprivation.
View Article and Find Full Text PDFUnlabelled: Renal mesangial cells are regarded as main players in glomerular inflammatory diseases. To investigate a possible crosstalk between inflammatory and hypoxia-driven signaling processes, we stimulated cultured mouse mesangial cells with different inflammatory agents and analyzed the expression of prolyl hydroxylase domain containing proteins (PHDs), the main regulators of hypoxia-inducible factor (HIF) stability. Administration of IL-1β (1 nM) and TNF-α (1 nM), a combination further referred to as cytokine mix (CM), resulted in a fivefold increase in PHD3 but not PHD1 and PHD2 mRNA expression compared to untreated controls.
View Article and Find Full Text PDFHypoxia-inducible factor-1α (HIF-1α), which accumulates in mammalian host organisms during infection, supports the defense against microbial pathogens. However, whether and to what extent HIF-1α expressed by myeloid cells contributes to the innate immune response against Leishmania major parasites is unknown. We observed that Leishmania-infected humans and L.
View Article and Find Full Text PDFBiochim Biophys Acta
December 2016
Hypoxia, by activating transcription factors induces transcription of some genes but it also reduces mRNA synthesis by mechanisms that are poorly defined. Activation of human macrophages with interleukin (IL)-4 showed that up-regulation of some IL-4 target genes was reduced when macrophages were incubated at 1% oxygen. Hypoxia impaired induction of chemokine (C-C motif) ligand 18 (CCL18), although IL-4-induced DNA binding of the transcription factor STAT6 remained intact.
View Article and Find Full Text PDFPost-translational modification of proteins with ubiquitin-like SUMO modifiers is a tightly regulated and highly dynamic process. The SENP family of SUMO-specific isopeptidases comprises six cysteine proteases. They are instrumental in counterbalancing SUMO conjugation, but their regulation is not well understood.
View Article and Find Full Text PDFSignificance: Leukocytes and especially macrophages are a major cellular constituent of the tumor mass. The tumor microenvironment not only determines their activity but in turn these cells also contribute to tumor initiation and progression. Recent Advances: Proinflammatory stimulated macrophages upregulate inducible nitric oxide synthase (NOS2) and produce high steady-state NO concentrations.
View Article and Find Full Text PDFActivation of hypoxia-inducible factor (HIF) and macrophage infiltration of solid tumors independently promote tumor progression. As little is known how myeloid HIF affects tumor development, we injected the polycyclic aromatic hydrocarbon (PAH) and procarcinogen 3-methylcholanthrene (MCA; 100 μg/100 μl) subcutaneously into myeloid-specific Hif-1α and Hif-2α knockout mice (C57BL/6J) to induce fibrosarcomas (n = 16). Deletion of Hif-1α but not Hif-2α in macrophages diminished tumor outgrowth in the MCA-model.
View Article and Find Full Text PDFPro-inflammatory cytokines secreted by adipose tissue macrophages (ATMs) contribute to chronic low-grade inflammation and obesity-induced insulin resistance. Recent studies have shown that adipose tissue hypoxia promotes an inflammatory phenotype in ATMs. However, our understanding of how hypoxia modulates the response of ATMs to free fatty acids within obese adipose tissue is limited.
View Article and Find Full Text PDFMacrophages respond to the Th2 cytokine IL-4 with elevated expression of arachidonate 15-lipoxygenase (ALOX15). Although IL-4 signaling elicits anti-inflammatory responses, 15-lipoxygenase may either support or inhibit inflammatory processes in a context-dependent manner. AMP-activated protein kinase (AMPK) is a metabolic sensor/regulator that supports an anti-inflammatory macrophage phenotype.
View Article and Find Full Text PDFBackground: Tumor associated macrophages (TAMs) are known to support tumor progression and their accumulation is generally associated with poor prognosis. The shift from a tumor-attacking to a tumor-supportive macrophage phenotype is based on an educational program that, at least in part, is initiated by apoptotic tumor cells.
Aims: We explored the macrophage phenotype shift during tumor progression by analyzing the macrophage NO-output system and examining potential NO targets.
Background: Under inflammatory conditions or during tumor progression macrophages acquire distinct phenotypes, with factors of the microenvironment such as hypoxia and transforming growth factor β (TGFβ) shaping their functional plasticity. TGFβ is among the factors causing alternative macrophage activation, which contributes to tissue regeneration and thus, resolution of inflammation but may also provoke tumor progression. However, the signal crosstalk between TGFβ and hypoxia is ill defined.
View Article and Find Full Text PDFBackground Information: Tumour-associated lymphangiogenesis was identified as an important clinical determinant for the prognosis of hepatocellular carcinoma (HCC) and significantly influences patient survival. However, in this context, little is known about regulation of lymphangiogenesis by hypoxia-inducible factors (HIF). In HCC, mainly HIF-1α was positively correlated with lymphatic invasion and metastasis, whereas a defined role of HIF-2α is missing.
View Article and Find Full Text PDFHypoxia promotes progression of hepatocellular carcinoma (HCC), not only affecting tumor cell proliferation and invasion, but also angiogenesis and thus, increasing the risk of metastasis. Hypoxia inducible factors (HIF)-1α and -2α cause adaptation of tumors to hypoxia, still with uncertainties towards the angiogenic switch. We created a stable knockdown of HIF-1α and HIF-2α in HepG2 cells and generated cocultures of HepG2 spheroids with embryonic bodies as an in vitro tumor model mimicking the cancer microenvironment.
View Article and Find Full Text PDFMacrophages play important roles in many diseases and are frequently found in hypoxic areas. A chronic hypoxic microenvironment alters global cellular protein expression, but molecular details remain poorly understood. Although hypoxia-inducible factor (HIF) is an established transcription factor allowing adaption to acute hypoxia, responses to chronic hypoxia are more complex.
View Article and Find Full Text PDFMacrophages (MΦ) often accumulate in hypoxic areas, where they significantly influence disease progression. Anti-inflammatory cytokines, such as IL-10, generate alternatively activated macrophages that support tumor growth. To understand how alternative activation affects the transcriptional profile of hypoxic macrophages, we globally mapped binding sites of hypoxia-inducible factor (HIF)-1α and HIF-2α in primary human monocyte-derived macrophages prestimulated with IL-10.
View Article and Find Full Text PDFBackground: Vitamin D deficiency in humans is frequent and has been associated with inflammation. The role of the active hormone 1,25-dihydroxycholecalciferol (1,25-dihydroxy-vitamin D3; 1,25-VitD3) in the cardiovascular system is controversial. High doses induce vascular calcification; vitamin D3 deficiency, however, has been linked to cardiovascular disease because the hormone has anti-inflammatory properties.
View Article and Find Full Text PDFBackground: Hypoxia-inducible factor-1 α (HIF-1 α ) and NF- κ B play important roles in the inflammatory response after hemorrhagic shock and resuscitation (H/R). Here, the role of myeloid HIF-1 α in liver hypoxia, injury, and inflammation after H/R with special regard to NF- κ B activation was studied.
Methods: Mice with a conditional HIF-1 α knockout (KO) in myeloid cell-line and wild-type (WT) controls were hemorrhaged for 90 min (30 ± 2 mm Hg) and resuscitated.
Biochim Biophys Acta
December 2013
Hypoxia inducible factors (HIFs) are important mediators of the cellular adaptive response during acute hypoxia. The role of HIF-1 and HIF-2 during prolonged periods of hypoxia, i.e.
View Article and Find Full Text PDFMΦ show a highly versatile phenotype depending on the receiving microenvironmental stimuli. MΦ phenotypes are grouped in three subcategories. One is classically activated MΦ (after stimulation with LPS or IFN-γ), and two are alternatively activated forms, known as wound-healing MΦ (induced by IL-4/IL-13) and regulatory MΦ (induced by IL-10/TGF-β).
View Article and Find Full Text PDFThe outstanding regeneration ability of skeletal muscle is based on stem cells that become activated and develop to myoblasts after myotrauma. Proliferation and growth of myoblasts result in self-renewal of skeletal muscle. In this article, we show that myotrauma causes a hypoxic microenvironment leading to accumulation of the transcription factor hypoxia-inducible factor-1 (HIF-1) in skeletal muscle cells, as well as invading myeloid cells.
View Article and Find Full Text PDF