Background: Accurately assessing the activity of Crohn's disease (CD) is crucial for determining prognosis and guiding treatment strategies for CD patients.
Objective: This study aimed to develop and validate a nomogram for assessing CD activity.
Methods: The semi-automatic segmentation method and PyRadiomics software were employed to segment and extract radiomics features from the spectral CT enterography images of lesions in 107 CD patients.
Macular edema, a prevalent ocular complication observed in various retinal diseases, can lead to significant vision loss or blindness, necessitating accurate and timely diagnosis. Despite the potential of deep learning for segmentation of macular edema, challenges persist in accurately identifying lesion boundaries, especially in low-contrast and noisy regions, and in distinguishing between Inner Retinal Fluid (IRF), Sub-Retinal Fluid (SRF), and Pigment Epithelial Detachment (PED) lesions. To address these challenges, we present a novel approach, termed Semantic Uncertainty Guided Cross-Transformer Network (SuGCTNet), for the simultaneous segmentation of multi-class macular edema.
View Article and Find Full Text PDFBackground: The purpose of this article is to develop a deep learning automatic segmentation model for the segmentation of Crohn's disease (CD) lesions in computed tomography enterography (CTE) images. Additionally, the radiomics features extracted from the segmented CD lesions will be analyzed and multiple machine learning classifiers will be built to distinguish CD activity.
Methods: This was a retrospective study with 2 sets of CTE image data.