Novel composite hydrogels composed of Capparis spinosa L. extract (CSL) and sodium alginate (SA) were developed for biomedical applications using calcium chloride (CaCl₂) as a nontoxic ionic crosslinker. The swelling degree, antioxidant activity, water retention, and biocompatibility of the CSL/SA composite hydrogels were thoroughly analyzed, along with their antibacterial properties.
View Article and Find Full Text PDFHydrogen has garnered considerable attention as a promising energy source for addressing contemporary environmental degradation and energy scarcity challenges. Electrocatalytic water splitting for hydrogen production has emerged as an environmentally friendly and versatile method, offering high purity. However, the development of cost-effective electrocatalytic catalysts using abundant and inexpensive materials is crucial.
View Article and Find Full Text PDFDeveloping non-noble-metal electrocatalysts for hydrogen evolution reactions with high activity and stability is the key issue in green hydrogen generation based on electrolytic water splitting. It has been recognized that the stacking of large CoP particles limits the intrinsic activity of as-synthesized CoP catalyst for hydrogen evolution reaction. In the present study, N-MoC/CoP-0.
View Article and Find Full Text PDFCapparis spinosa L. (CSL) is used in traditional medicinal purposes for wound dressing because it contains natural phenolic and flavonoid active compounds. In the current study, a bilayer of biocompatible and mechanically stable nanofiber scaffolds with polycaprolactone (PCL)/zinc oxide and Capparis spinosa L.
View Article and Find Full Text PDFMaterials (Basel)
September 2022
Understanding the ultrafine substructure in freshly formed Fe-C martensite is the key point to reveal the real martensitic transformation mechanism. As-quenched martensite, whose transformation temperature is close to room temperature, has been investigated in detail by means of transmission electron microscopy (TEM) in this study. The observation results revealed that the freshly formed martensite after quenching is actually composed of ultrafine crystallites with a grain size of 1−2 nm.
View Article and Find Full Text PDFSci Technol Adv Mater
April 2019
Deformation microstructure of orthorhombic-α" martensite in a Ti-7.5Mo (wt.%) alloy was investigated by tracking a local area of microstructure using scanning electron microscopy, electron back-scattered diffraction, and transmission electron microscopy.
View Article and Find Full Text PDFUnlabelled: While titanium alloys represent the current state-of-the-art for orthopedic biomaterials, concerns still remain over their modulus. Circumventing this via increased porosity requires high elastic admissible strains, yet also limits traditional thermomechanical strengthening techniques. To this end, a novel β-type Ti-Zr-Ta alloy system, comprised of Ti-45Zr-10Ta, Ti-40Zr-14Ta, Ti-35Zr-18Ta and Ti-30Zr-22Ta, was designed and characterized mechanically and microstructurally.
View Article and Find Full Text PDFTitanium alloys are receiving increasing research interest for the development of metallic stent materials due to their excellent biocompatibility, corrosion resistance, non-magnetism and radiopacity. In this study, a new series of Ti-Ta-Hf-Zr (TTHZ) alloys including Ti-37Ta-26Hf-13Zr, Ti-40Ta-22Hf-11.7Zr and Ti-45Ta-18.
View Article and Find Full Text PDFUnlabelled: In this paper, we present further work on the influence of minor additions of Ru to the Ti-20Nb alloy system, with a primary focus on mechanical properties of the as-cast material, along with microstructural response to elevated temperatures. Findings include high as-cast strengths and admissible strain values, up to 920MPa and 1.5% respectively, along with moduli down to approximately 65GPa in the as-cast state.
View Article and Find Full Text PDFUnlabelled: In this study, a Ti-(Ta,Nb)-Fe system was investigated with aims toward the development of high strength, biocompatible titanium alloy suitable for the development of porous orthopedic biomaterials with minimal processing. Notable findings include yield strengths of 740, 1250 and 1360 MPa for the Ti-12Nb-5Fe, Ti-7Ta-5Fe and Ti-10Ta-4Fe alloys, respectively, with elastic moduli comparable to existing Ti-alloys, yielding admissible strains of 0.9 ± 0.
View Article and Find Full Text PDFMetastable ω phase is common in body-centred cubic (bcc) metals and alloys, including high-alloying steels. Recent theoretical calculations also suggest that the ω structure may act as an intermediate phase for face-centred cubic (fcc)-to-bcc transformation. Thus far, the role of the ω phase played in fcc-bcc martensitic transformation in carbon steels has not been reported.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2014
Ag nanocrystals (NCs) were photocatalytically grown on the surfaces of brookite and rutile nanocrystals, respectively, and their surface-enhanced Raman scattering (SERS) performance was evaluated. The resultant Ag NCs exhibit different morphologies owing to the different photocatalytic capabilities of the two types of TiO2 under otherwise identical synthetic conditions. The effects of AgNO3 concentration, UV irradiation time, and UV light power on the morphology evolution and growth kinetics of the Ag NCs were systematically investigated.
View Article and Find Full Text PDF