Nano-carbon reinforced titanium matrix/hydroxyapatite (HA) biocomposites were successfully prepared by spark plasma sintering (SPS). The microstructure, mechanical properties, biocompatibility, and the relationship between microstructure and properties of biocomposites were systematically investigated. Results showed there are some new phases in sintered composites, such as β-Ti, TiO₃, ZrO₂, etc.
View Article and Find Full Text PDFTitanium alloy/Hydroxyapatite (HA) composites have become a hot research topic in biomedical materials, while there are some challenges concerning bioactivity and mechanical properties such as low interface adhesion at the interface between metal and ceramic, complex interfacial reactions, and so on. Nevertheless, composites with reinforced phases can reach special properties that meet the requirements of biomedical materials due to the strong interfacial interactions between reinforcing phases (nano-carbon, partial oxides, and so on) and Titanium alloys or HA. This review summarizes the interface properties and mechanisms of Titanium alloy/HA composites, including interfacial bonding methods, strengthening and toughening mechanisms, and performance evaluation.
View Article and Find Full Text PDFSingle-crystal α-Al₂O₃ fibres can be utilized as a novel reinforcement in high-temperature composites owing to their high elastic modulus, chemical and thermal stability. Unlike non-oxide fibres and polycrystalline alumina fibres, high-temperature oxidation and polycrystalline particles boundary growth will not occur for single-crystal α-Al₂O₃ fibres. In this work, single-crystal α-Al₂O₃ whiskers and Al₂O₃ particles synergistic reinforced copper-graphite composites were fabricated by mechanical alloying and hot isostatic pressing techniques.
View Article and Find Full Text PDFBiomaterial composites made of titanium and hydroxyapatite (HA) powder are among the most important biomedicalmaterials due to their good mechanical properties and biocompatibility. In this work, graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites were prepared by vacuum hot-pressing sintering. The microstructure and mechanical properties of graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were systematically investigated.
View Article and Find Full Text PDFMulti-walled carbon nanotubes (MWCNTs) and graphenes have been taken for novel reinforcements due to their unique structure and performance. However, MWCNTs or graphenes reinforced copper matrix composites could not catch up with ideal value due to reinforcement dispersion in metal matrix, wettability to metal matrix, and composite material interface. Taking advantage of the superior properties of one-dimensional MWCNTs and two-dimensional graphenes, complementary performance and structure are constructed to create a high contact area between MWCNTs and graphenes to the Cu matrix.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
December 2015
Dispersions of multi-walled carbon nanotubes (MW-CNTs) assisted by non-covalent surface modification and covalent surface modification were prepared using different concentration of gallic acid aqueous solution. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to investigate the dispersion states and effect of MWNTs. FTIR results demonstrate that concentration of gallic acid has great effect on the surface modification of multi-walled carbon nanotubes.
View Article and Find Full Text PDF