Publications by authors named "Degui Geng"

Effective antitumor T cell activity relies on the expression and MHC presentation of tumor neoantigens. Tumor cells can evade T cell detection by silencing the transcription of antigens or by altering MHC machinery, resulting in inadequate neoantigen-specific T cell activation. We identified the DNA-protein kinase inhibitor (DNA-PKi) NU7441 as a promising immunomodulator that reduced immunosuppressive proteins, while increasing MHC-I expression in a panel of human melanoma cell lines.

View Article and Find Full Text PDF

Over the past decade, immunotherapies have revolutionized the treatment of cancer. Although the success of immunotherapy is remarkable, it is still limited to a subset of patients. More than 1500 clinical trials are currently ongoing with a goal of improving the efficacy of immunotherapy through co-administration of other agents.

View Article and Find Full Text PDF

Melanoma represents the most serious type of skin cancer. Although recent years have seen advances using targeted and immunotherapies, most patients remain at high risk for tumor recurrence. Here we show that IRAK-M, a negative regulator of MyD88 signaling, is deficient or low in melanoma and expression levels correlate with patient survival.

View Article and Find Full Text PDF

The tumor microenvironment counters antitumor T-cell responses, in part, by blunting their activation and infiltration. Ligands that engage Toll-like receptors (TLR) on T cells and antigen-presenting cells can act as potent immune adjuvants. In this study, we show how tumor-reactive T cells engineered to secrete bacterial flagellin, a TLR5 ligand (TLR5L), can engender a costimulatory signal that augments antitumor activity.

View Article and Find Full Text PDF

Toll-like receptors (TLR) are expressed by a variety of cancers, including melanoma, but their functional contributions in cancer cells are uncertain. To approach this question, we evaluated the effects of stimulating or inhibiting the TLR/IL-1 receptor-associated kinases IRAK-1 and IRAK-4 in melanoma cells where their functions are largely unexplored. TLRs and TLR-related proteins were variably expressed in melanoma cell lines, with 42% expressing activated phospho-IRAK-1 constitutively and 85% expressing high levels of phospho-IRAK-4 in the absence of TLR stimulation.

View Article and Find Full Text PDF

Purpose: To develop an adaptable gene-based vector that will confer immune cell specificity to various cancer types.

Experimental Design: Human and mouse T cells were genetically engineered to express a chimeric antigen receptor (CAR) that binds a fluorescein isothiocyanate (FITC) molecule, termed anti-FITC CAR T cells. Various antibodies (Ab) currently in clinical use including cetuximab (Ctx), trastuzumab (Her2), and rituximab (Rtx) were conjugated with FITC and tested for their ability to bind tumor cells, activate T cells, and induce antitumor effects in vitro and in vivo.

View Article and Find Full Text PDF

B and T lymphocyte attenuator (BTLA) is a co-inhibitory receptor that interacts with herpesvirus entry mediator (HVEM), and this interaction regulates pathogenesis in various immunologic diseases. In graft-versus-host disease (GVHD), BTLA unexpectedly mediates positive effects on donor T-cell survival, whereas immunologic mechanisms of this function have yet to be explored. In this study, we elucidated a role of BTLA in GVHD by applying the newly established agonistic anti-BTLA monoclonal antibody that stimulates BTLA signal without antagonizing BTLA-HVEM interaction.

View Article and Find Full Text PDF

The efficacy of T cell-based immunotherapy to treat cancer patients remains a challenge partly because of the weak activity toward subdominant tumor antigens (TAg) and to tumors expressing suboptimal TAg levels. Recent reports indicate that Toll-like receptor (TLR) stimulation on T cells can lower the activation threshold. In this study, we examined the antitumor activity and survival of TLR2-MyD88-stimulated CD8 T cells derived from melanoma patients and T-cell receptor transgenic pmel mice.

View Article and Find Full Text PDF

Emerging reports reveal that activating Toll-like receptor-2 (TLR2)-MyD88 signals in CD8 T lymphocytes enhances cytokine production and cytotoxicity; however, the signaling pathway remains undefined. In the present study, we examined the physiologic significance and molecular mechanisms involved in this process. We found that TLR2 engagement on T-cell receptor transgenic CD8 OT-1 T cells increased T-bet transcription factor levels consequently, augmenting effector transcript and protein levels both in vivo and in vitro.

View Article and Find Full Text PDF

Toll-like receptors (TLRs) are among the fundamental molecules that alert the immune system to the presence of an infection by recognizing pathogen-associated molecules. Much of our understanding regarding TLR function stems from the study of innate immune cells. Recent studies by several groups, including ours, have shown that TLRs can function as costimulatory receptors for antigen-specific T cells, resulting in enhanced T-cell survival and increased expression of effector molecules.

View Article and Find Full Text PDF

RNA interference (RNAi), a process that specifically silences target gene expression, is a powerful technique to modulate cellular functions. In this study, we identified two small interference RNA (siRNA) sequences that can specifically and efficiently silence the expression of the granulocyte colony-stimulating factor receptor (GCSF-R) gene and achieved stable knockdown of GCSF-R using pFIV lentivirus containing the GCSF-R siRNA. GCSF-R knockdown significantly reduces the expression of IL-lalpha, IL-lbeta, IL-6, IL-10, H-2Kb, I-Ab, CD80 and CD86, and increases PDL1 and PDL2 expression, while IL-12p35, TGFbeta, TNFalpha and CD40 expression is unaltered.

View Article and Find Full Text PDF