The instability of hybrid wide-bandgap (WBG) perovskite materials (with bandgap larger than 1.68 eV) still stands out as a major constraint for the commercialization of perovskite/silicon tandem photovoltaics, yet its correlation with the facet properties of WBG perovskites has not been revealed. Herein, we combine experiments and theoretical calculations to comprehensively understand the facet-dependent instability of WBG perovskites.
View Article and Find Full Text PDFSurface-structured engineering of hyperdoped silicon can effectively facilitate the absorption of sub-bandgap photons in pristine single-crystal silicon (sc-Si). Here, we conducted different annealing approaches of ordinary thermal annealing (OTA) and nanosecond laser annealing (NLA) on modification of titanium-hyperdoped silicon (Si:Ti) surface structure, to achieve efficient near-infrared detection. It is presented that both OTA and NLA processes can improve the crystallinity of Si:Ti samples.
View Article and Find Full Text PDFWide-bandgap perovskite solar cells (PSCs) toward tandem photovoltaic applications are confronted with the challenge of device thermal stability, which motivates to figure out a thorough cognition of wide-bandgap PSCs under thermal stress, using in situ atomic-resolved transmission electron microscopy (TEM) tools combing with photovoltaic performance characterizations of these devices. The in situ dynamic process of morphology-dependent defects formation at initial thermal stage and their proliferations in perovskites as the temperature increased are captured. Meanwhile, considerable iodine enables to diffuse into the hole-transport-layer along the damaged perovskite surface, which significantly degrade device performance and stability.
View Article and Find Full Text PDFEdges and surfaces play indispensable roles in affecting the chemical-physical properties of materials, particularly in two-dimensional transition metal dichalcogenides (TMDCs) with reduced dimensionality. Herein, we report a novel edge/surface structure in multilayer 1T-TiSe, i.e.
View Article and Find Full Text PDFThe density and spatial distribution of substituted dopants affect the transition metal dichalcogenides (TMDCs) materials properties. Previous studies have demonstrated that the density of dopants in TMDCs increases with the amount of doping, and the phenomenon of doping concentration difference between the nucleation center and the edge is observed, but the spatial distribution law of doping atoms has not been carefully studied. Here, it is demonstrated that the spatial distribution of dopants changes at high doping concentrations.
View Article and Find Full Text PDFUnderstanding the growth mechanisms of multielement two-dimensional (2D) crystals is challenging because of the unbalanced stoichiometry and possible reconstruction of their edges. Here, we present a systematic theoretical study on the chemical vapor deposition (CVD) growth mechanism of MoS. We found that the growth kinetics of MoS highly depends on its edge reconstruction determined by concentrations of Mo and S in the growth environment.
View Article and Find Full Text PDFA mechanistic understanding of interactions between atomically thin two-dimensional (2D) transition-metal dichalcogenides (TMDs) and their growth substrates is important for achieving the unidirectional alignment of nuclei and seamless stitching of 2D TMD domains and thus 2D wafers. In this work, we conduct a cross-sectional scanning transmission electron microscopy (STEM) study to investigate the atomic-scale nucleation and early stage growth behaviors of chemical vapor deposited monolayer (ML-) MoS and molecular beam epitaxy ML-MoSe on a Au(111) substrate. Statistical analysis reveals the majority of as-grown domains, i.
View Article and Find Full Text PDFIn this work, the interlayer coupling dependent lithium intercalation induced phase transition in bilayer MoS (BL-MoS) was investigated using an atomic-resolution annual dark-field scanning transmission electron microscope (ADF-STEM). It was revealed that the lithiation induced H → T' phase transition in BL-MoS strongly depended on the interlayer twist angle; i.e.
View Article and Find Full Text PDFAtomically thin transition-metal dichalcogenide (TMDC) heterostructures have attracted increasing attention because of their unprecedented potential in the fields of electronics and optoelectronics. However, selective growth of either lateral or vertical TMDC heterostructures remains challenging. Here, we report that lateral and vertical MoS/MoSe epitaxial heterostructures can be successfully fabricated via a one-step growth strategy, which includes triggering by the concentration of sulfur precursor vapor and a high-temperature annealing process.
View Article and Find Full Text PDFLayered metal dichalcogenides (LMDs) semiconducting materials have recently attracted tremendous attention as high performance gas sensors due to unique chemical and physical properties of thin layers. Here, three-dimensional SnS nanoflower structures assembled with thin nanosheets were synthesized via a facile solvothermal process. When applied to detect 100ppm NH at 200°C, the SnS based sensor exhibited high response value of 7.
View Article and Find Full Text PDFIn this paper, a facile and elegant Green Chemistry method for the synthesis of SnO based hollow spheres has been investigated. The influences of doping, crystallite morphology, and operating condition on the O sensing performances of SnO based hollow-sphere sensors were comprehensively studied. It was indicated that, compared with undoped SnO, 10 at.
View Article and Find Full Text PDF