Publications by authors named "Defu Xu"

Microplastics (MPs) have aroused growing environmental concerns due to their biotoxicity and vital roles in accelerating the spread of toxic elements. Illuminating the interactions between MPs and heavy metals (HMs) is crucial for understanding the transport and fate of HM-loaded MPs in specific environmentally relevant scenarios. Herein, the adsorption of copper (Cu) and zinc (Zn) ions over polyethylene (PE) and polyethylene terephthalate (PET) particulates before and after heat persulfate oxidation (HPO) treatment was comprehensively evaluated in simulated and real swine wastewaters.

View Article and Find Full Text PDF

The allure of substantial profits has perpetuated the illicit trade of counterfeit vintage labels for baijiu. While various approaches have been employed to intelligently ascertain the vintage of baijiu, many of them are both cost-intensive and time-consuming. This work pioneered the use of Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, coupled with chemometric analysis, offering a non-destructive and economically viable method for discriminating sauce-flavor baijiu across different aging periods (1-, 2-, and 3-year).

View Article and Find Full Text PDF

The aquatic ecological risks posed by the surface-active components of tire wear particles (TWPs) are not fully understood. This study aimed to determine the acute (24 h exposure) aquatic toxicity effects of TWPs on freshwater biofilms in terms of total organic carbon (TOC), chlorophyll-a (Chl-a) abundance, quantum yield (ФM), and adenosine triphosphate (ATP). Three types of TWP were tested: TWPs produced via the typical wear of tires and roads (i.

View Article and Find Full Text PDF

Although some methods have been proposed for the identification of irradiated baijius, they are often costly, time-consuming, and destructive. It is also unclear what instrumentation can be used to fully characterize the quality changes in irradiated baijius. To address this issue, this study pioneers the use of attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy in combination with chemometrics to open up new avenues for characterizing irradiated baijius and their quality control.

View Article and Find Full Text PDF

Eutrophication of water bodies due to excess ammonia nitrogen (NH-N) is harmful to aquatic organisms and human health. In this study, foundry dust (FD) from foundry industry was used to synthesize NaA zeolite to use as an adsorbent to remove NH-N from wastewater. Results demonstrate that FD could be successfully synthesized to form a foundry dust-based NaA zeolite (FZA) through adjustment of the silica-alumina ratio of n (SiO)/n (AlO) at 2 at 95 °C.

View Article and Find Full Text PDF

With the exacerbating water eutrophication globally, it is important to recover nitrogen (N) and phosphorus (P) from sewage for recycle. In this study, coconut shell biochar and ethylene diamine tetraacetic acid (EDTA) were added into the designed fluidized bed reactor (FBR) to create struvite-biochar. N and P released from struvite-biochar and the recovery efficiency of N and P from concentrated sludge supernatant were analyzed.

View Article and Find Full Text PDF

This article reviews the nano-effects and applications of different crystalline nano‑titanium dioxide (nano-TiO), identifies their discharge, distribution, behavior, and toxicity to aquatic organisms (focusing on microbial aggregates) in sewage and surface-water, summarizes related toxicity mechanisms, and critically proposes future perspectives. The results show that: 1) based on crystal type, application boundaries of nano-TiO have become clear, extending from traditional manufacturing to high-tech fields; 2) concentration of nano-TiO in water is as high as hundreds of thousands of μg/L (sewage) or several to dozens of μg/L (surface-water) due to direct application or indirect release; 3) water environmental behaviors of nano-TiO are mainly controlled by hydration conditions and particle characteristics; 4) aquatic toxicities of nano-TiO are closely related to their water environmental behavior, in which crystal type and tested species (such as single species and microbial aggregates) also play the key role. Going forward, the exploration of the toxicity mechanism will surely become a hot topic in the aquatic-toxicology of nano-TiO, because most of the research so far has focused on the responses of biological indicators (such as metabolism and damage), while little is known about the stress imprint caused by the crystal structures of nano-TiO in water environments.

View Article and Find Full Text PDF

Removal of nutrients in water is crucial to control eutrophication. Fly ash has been increasingly used to synthesize zeolite to remove nutrients, but it is still poorly understood about the removal capacity of zeolite synthesized from coal gasification slag (CGS), which has not been well recycled in many countries. In this study, the CGS was acid leached, alkali dissolved, and synthesized to carbon/zeolite composite (C/ZC) under induction by medical stone.

View Article and Find Full Text PDF

Clarifying the properties/features of nutrient loss from farmland surface runoff is essential for the mitigation of nutrient losses. Plough pan formation underneath topsoil is a common feature of long-term paddy soils that significantly affects water movement and nutrient runoff loss, especially during the upland season of paddy-upland rotation. To characterize the nutrients that are lost from wheat fields of paddy-wheat rotation with runoff, a field experiment was conducted in a wheat field using a simulated rainfall system from November 2019 to May 2020 in Nanjing, China.

View Article and Find Full Text PDF

Plant diversity plays an important role in the integrity and stability of wetland ecosystems. Lhalu Wetland is the highest wetland in the world and is the largest urban natural swamp in China. It plays an important role in ecological balance, increasing air humidity, improving the urban climate, and purifying the water environment in Lhasa.

View Article and Find Full Text PDF

Many constructed wetland systems are facing the problem of low dissolved oxygen (DO) and reduced nitrogen removal efficiency. In this study, an experimental constructed wetland system is designed and used to investigate the effect of biochar (rice husk biochar (RHB), coconut shell biochar (CSB), and wood biochar (WB) and earthworm on DO concentration, nitrogen transformation, and ammonia nitrogen removal. Specifically, effects of different biochar and earthworm on NH-N in wastewater, N content of Phragmites australis, NH-N and NO-N content in substrates, microbial nitrification and denitrification potentials, and the DO concentration were investigated.

View Article and Find Full Text PDF

Physiochemical properties of biochars derived from different feedstock materials (rice straw, Phragmites communis, sawdust and egg shell) at different pyrolysis temperatures were analyzed, and adsorption capacities of ammonium (NH) on the biochars were investigated. The results show a clear effect of pyrolysis temperature on physicochemical properties of the biochars, including specific surface area, pH, and zeta potential. Consequently, biochars derived from the studied feedstocks at the selected temperatures exhibited different capacities to absorb NH.

View Article and Find Full Text PDF

Four biochars were made via pyrolysis at 500 °C using different waste plant materials, including tree branches from Cinnamonum campora (L.) Pres (CCP), Eriobotrya japonica (Thunb.) Lindl (EJL), Rohdea roth (RR) and bamboo shoots (Phyllostachys sulphurea) (PS).

View Article and Find Full Text PDF

Silicon is one of the most promising candidates for anodes of lithium ion batteries attributed to the highest theoretical specific capacity (4200 mAh/g). However, the conductivity and structural integrity during the lithiation-delithiation process are very poor, which seriously affect the actual electrochemical performance. To address these issues, we introduce graphene framework as both structural skeletons and conductive networks for silicon in this work.

View Article and Find Full Text PDF

A constructed wetland with L. was built. Straw biochar, reed biochar, and sawdust biochar was added into the constructed wetland individually to study the effect of different biochars on the root morphology, dissolved oxygen, and purification ability of the constructed wetland.

View Article and Find Full Text PDF

This study investigated the occurrence and contamination risk of estrogens in livestock manure in Jiangsu Province, China. Four estrogens-estriol (E3), 17β-estradiol (17β-E2), bisphenol A (BPA), and 17α-ethinyloestradiol (EE2)-were detected in livestock manure from hens, ducks, swine, and cows. The respective mean concentrations of each estrogen found in these manures were 289.

View Article and Find Full Text PDF

The presence of estrogens in livestock excrement has raised concerns about their potential negative influence on animals and the overall food cycle. This is the first investigation to simultaneously remove estrogens, including estriol (E3), bisphenol A (BPA), diethylstilbestrol (DES), estradiol (E2), and ethinyl estradiol (EE2), from cow manure using a Fenton oxidation technique. Based on the residual concentrations and removal efficiency of estrogens, the Fenton oxidation reaction conditions were optimized as follows: a H₂O₂ dosage of 2.

View Article and Find Full Text PDF

Knowledge of the interaction between graphene-based materials and low-molecular-weight organic acids (LOAs) is essential to understand fate and effects of graphene-based materials in the aquatic environment, but this interaction remains poorly elucidated. In this study, the effects of LOAs on the physicochemical properties of graphene nanoplatelets (GNPs) in an aqueous medium and on the GNP toxicity to algae were studied. The unicellular green alga Scenedesmus obliquus was exposed to GNP suspensions in the presence of benzoic acid or gallic acid at various concentrations.

View Article and Find Full Text PDF

Understanding how engineered nanoparticles (ENPs) interact with natural organic acids is important to ecological risk assessment of ENPs, but this interaction remains poorly studied. Here, we investigate the dispersion stability, ion release, and toxicity of yttrium oxide nanoparticles (nY2O3) suspensions after exposure to two low molecular weight natural organic acids (LOAs), namely benzoic acid and gallic acid. We find that in the presence of LOAs the nY2O3 suspensions become more stable with surface zeta potential more positive or negative, accompanied by small agglomerated size.

View Article and Find Full Text PDF

The response of purifying capability, enzyme activity, nitrification potentials, and total number of bacteria in the rhizosphere in December to wetland plants, substrates, and earthworms was investigated in integrated vertical flow constructed wetlands (IVFCW). The removal efficiency of total nitrogen (TN), NH4-N, chemical oxygen demand (COD), and total phosphorus (TP) was increased when earthworms were added into IVFCW. A significantly average removal efficiency of N in IVFCW that employed river sand as substrate and in IVFCW that employed a mixture of river sand and Qing sand as substrate was not found.

View Article and Find Full Text PDF

A sequential extraction method was utilized to analyze seven forms of P in an integrated vertical-flow constructed wetland (IVFCW) containing earthworms and different substrates. The aluminum-bound P (Al-P) content was found to be lower, and the occluded P (Oc-P) content was higher in the IVFCW. The addition of earthworms into the influent chamber of IVFCW increased the exchange P (Ex-P), iron-bound P (Fe-P), calcium bound P (Ca-P), Oc-P, detritus-bound (De-P) and organic P (Org-P) content in the influent chamber, and also enhanced P content uptake by wetland plants.

View Article and Find Full Text PDF

A surface- and vertical subsurface-flow-constructed wetland were designed to study the response of chlorophyll and antioxidant enzymes to elevated UV radiation in three types of wetland plants (Canna indica, Phragmites austrail, and Typha augustifolia). Results showed that (1) chlorophyll content of C. indica, P.

View Article and Find Full Text PDF

Four constructed wetland systems were studied to investigate the effects of adding Eisenia fetida on the purifying capacity of constructed wetlands. Addition of E. fetida increased the photosynthetic rate (Pn), transpiration rate (Tr) and chlorophyll meter value of leaves of Iris pseudacorus L.

View Article and Find Full Text PDF

This study investigates biomass, density, photosynthetic activity, and accumulation of nitrogen (N) and phosphorus (P) in three wetland plants (Canna indica, Typha augustifolia, and Phragmites austrail) in response to the introduction of the earthworm Eisenia fetida into a constructed wetland. The removal efficiency of N and P in constructed wetlands were also investigated. Results showed that the photosynthetic rate (P n), transpiration rate (T r), and stomatal conductance (S cond) of C.

View Article and Find Full Text PDF

The response of nitrification potentials, denitrification potentials, and N removal efficiency to the introduction of earthworms and wetland plants in a vertical flow constructed wetland system was investigated. Addition of earthworms increased nitrification and denitrification potentials of substrate in non-vegetated constructed wetland by 236% and 8%, respectively; it increased nitrification and denitrification potentials in rhizosphere in vegetated constructed wetland (Phragmites austrail, Typha augustifolia and Canna indica), 105% and 5%, 187% and 12%, and 268% and 15% respectively. Denitrification potentials in rhizosphere of three wetland plants were not significantly different, but nitrification potentials in rhizosphere followed the order of C.

View Article and Find Full Text PDF