Publications by authors named "Deforce Dieter"

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy. Current intensified therapeutic protocols coincide with severe side effects, and no salvage therapy is available for primary therapy-resistant or relapsed patients. This highlights the need to identify new therapeutic targets in T-ALL.

View Article and Find Full Text PDF

Asphyxiated neonates often undergo therapeutic hypothermia (TH) to reduce morbidity and mortality. As perinatal asphyxia and TH impact neonatal physiology, this could also influence enzyme functionality. Therefore, this study aimed to unravel the impact of age, hypothermia and hypoxia on porcine hepatic cytochrome P450 (CYP) gene expression, protein abundance and activity.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists created a new method called schPTM to study tiny details of proteins in individual cells, especially how they change after certain treatments.
  • This method can identify different protein changes (68 types) and can tell the difference between cells that were treated and those that weren't.
  • It helps researchers learn more about how cells respond differently to treatments and understand the complex signals, or "codes," in the proteins.
View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) hold significant potential as therapeutic agents and are invaluable tools in biomedical research. However, the lack of efficient high-throughput screening methods for single antibody-secreting cells (ASCs) has limited the diversity of available antibodies. Here, we introduce a novel, integrated workflow employing self-seeding microwells and an automated microscope-puncher system for the swift, high-throughput screening and isolation of single ASCs.

View Article and Find Full Text PDF

The global scientific response to COVID 19 highlighted the urgent need for increased throughput and capacity in bioanalytical laboratories, especially for the precise quantification of proteins that pertain to health and disease. Acoustic ejection mass spectrometry (AEMS) represents a much-needed paradigm shift for ultra-fast biomarker screening. Here, a quantitative AEMS assays is presented, employing peptide immunocapture to enrich (i) 10 acute phase response (APR) protein markers from plasma, and (ii) SARS-CoV-2 NCAP peptides from nasopharyngeal swabs.

View Article and Find Full Text PDF

An unbiased screening of which proteins are deregulated in vitiligo using proteomics can offer an enormous value. It could not only reveal robust biomarkers for detecting disease activity but can also identify which patients are most likely to respond to treatments. We performed a scoping review searching for all articles using proteomics in vitiligo.

View Article and Find Full Text PDF

Lasiodiplodia hormozganensis, initially recognized as a fungal plant pathogen, is recognized now acknowledged as a potential threat to humans. However, our understanding of the pathogenesis mechanisms of Lasiodiplodia species remains limited, and the impact of temperature on its pathogenicity is unclear. This study aims to elucidate the effects of temperature on the biology of L.

View Article and Find Full Text PDF
Article Synopsis
  • T-lineage acute lymphoblastic leukemia (T-ALL) is a serious type of cancer that affects a significant percentage of children and adults, with poor outcomes for those who relapse or resist treatment.
  • Understanding the role of the proto-oncogene MYB is crucial as it is linked to increased T-ALL aggression and worse patient survival, particularly in pediatric cases.
  • This study reveals that high MYB levels drive T-ALL development and that targeting MYB's function could offer a promising new treatment approach.
View Article and Find Full Text PDF

The impact of multiple environmental and anthropogenic stressors on the marine environment remains poorly understood. Therefore, we studied the contribution of environmental variables to the densities and gene expression of the dominant zooplankton species in the Belgian part of the North Sea, the calanoid copepod Temora longicornis. We observed a reduced density of copepods, which were also smaller in size, in samples taken from nearshore locations when compared to those obtained from offshore stations.

View Article and Find Full Text PDF

Mapping-out baseline physiological muscle parameters with their metabolic blueprint across multiple archetype equine breeds, will contribute to better understanding their functionality, even across species. 1) to map out and compare the baseline fiber type composition, fiber type and mean fiber cross-sectional area (fCSA, mfCSA) and metabolic blueprint of three muscles in 3 different breeds 2) to study possible associations between differences in histomorphological parameters and baseline metabolism. Muscle biopsies [ (PM), (VL) and (ST)] were harvested of 7 untrained Friesians, 12 Standardbred and 4 Warmblood mares.

View Article and Find Full Text PDF

Background: Despite the increasing number of epigenomic studies in plants, little is known about the forces that shape the methylome in long-lived woody perennials. The Lombardy poplar offers an ideal opportunity to investigate the impact of the individual environmental history of trees on the methylome.

Results: We present the results of three interconnected experiments on Lombardy poplar.

View Article and Find Full Text PDF

MicroRNAs (miRNAs), which can be carried inside extracellular vesicles (EVs), play a crucial role in regulating embryo development up to the blastocyst stage. Yet, the molecular mechanisms underlying blastocyst development and quality are largely unknown. Recently, our group identified 69 differentially expressed miRNAs in extracellular vesicles (EVs) isolated from culture medium conditioned by bovine embryos that either developed to the blastocyst stage or did not (non-blastocysts).

View Article and Find Full Text PDF

Pharmacogenomics (PGx) studies the impact of interindividual genomic variation on drug response, allowing the opportunity to tailor the dosing regimen for each patient. Current targeted PGx testing platforms are mainly based on microarray, polymerase chain reaction, or short-read sequencing. Despite demonstrating great value for the identification of single nucleotide variants (SNVs) and insertion/deletions (INDELs), these assays do not permit identification of large structural variants, nor do they allow unambiguous haplotype phasing for star-allele assignment.

View Article and Find Full Text PDF

Liver-resident NK (lrNK) cells have been studied in humans as well as in mice. Unfortunately, important differences have been observed between murine and human lrNK cells, complicating the extrapolation of data obtained in mice to man. We previously described two NK cell subsets in the porcine liver: A CD8α subset, with a phenotype much like conventional CD8α NK cells found in the peripheral blood, and a specific liver-resident CD8α subset which phenotypically strongly resembles human lrNK cells.

View Article and Find Full Text PDF

Important changes in glucose transporter (GLUT) expression should be expected if the glucose influx plays a pivotal role in fuelling or connecting metabolic pathways that are upregulated in response to exercise. The aim was to assess GLUT4, 8, and 12 dynamics in response to training and acute exercise. Sixteen untrained Standardbred mares (3-4 year) performed an incremental SET at the start and end of 8 weeks harness training.

View Article and Find Full Text PDF

Green leaf volatiles (GLVs), volatile organic compounds released by plants upon tissue damage, are key signaling molecules in plant immunity. The ability of exogenous GLV application to trigger an induced resistance (IR) phenotype against arthropod pests has been widely reported, but its effectiveness against plant pathogens is less well understood. In this study, we combined mRNA sequencing-based transcriptomics and phytohormone measurements with multispectral imaging-based precision phenotyping to gain insights into the molecular basis of Z-3-hexenyl acetate-induced resistance (Z-3-HAC-IR) in rice.

View Article and Find Full Text PDF

Yarrowia lipolytica has been considered one of the most promising platforms for the microbial production of fatty acids and derived products. The deletion of the faa1 gene coding for an acyl-CoA synthetase leads to the accumulation and secretion of free fatty acids (FFAs) into the extracellular space. The secretion of products is beneficial for the development of microbial cell factories to avoid intracellular inhibitory effects and reduce downstream processing costs.

View Article and Find Full Text PDF

While human in vitro embryo production is generally performed individually, animal models have shown that culturing embryos in groups improves blastocyst yield and quality. Paracrine embryotrophins could be responsible for this improved embryo development, but their identity remains largely unknown. We hypothesize that supplementation of embryotrophic proteins to a culture medium could be the key to improve individual embryo production.

View Article and Find Full Text PDF

Radiation-Induced CardioVascular Disease (RICVD) is an important concern in thoracic radiotherapy with complex underlying pathophysiology. Recently, we proposed DNA methylation as a possible mechanism contributing to RICVD. The current study investigates DNA methylation in heart-irradiated rats and radiotherapy-treated breast cancer (BC) patients.

View Article and Find Full Text PDF

Background: Receptor-interacting protein kinase 1 (RIPK1) is a key mediator of regulated cell death (including apoptosis and necroptosis) and inflammation, both drivers of COPD pathogenesis. We aimed to define the contribution of RIPK1 kinase-dependent cell death and inflammation in the pathogenesis of COPD.

Methods: We assessed expression in single-cell RNA sequencing (RNA-seq) data from human and mouse lungs, and validated RIPK1 levels in lung tissue of COPD patients immunohistochemistry.

View Article and Find Full Text PDF

The pandemic readiness toolbox needs to be extended, targeting different biomolecules, using orthogonal experimental set-ups. Here, we build on our Cov-MS effort using LC-MS, adding SISCAPA technology to enrich proteotypic peptides of the SARS-CoV-2 nucleocapsid (N) protein from trypsin-digested patient samples. The CovMS assay is compatible with most matrices including nasopharyngeal swabs, saliva, and plasma and has increased sensitivity into the attomole range, a 1000-fold improvement compared to direct detection in a matrix.

View Article and Find Full Text PDF

Pseudorabies virus (PRV) is a member of the alphaherpesvirus subfamily and the causative agent of Aujeszky's disease in pigs. Driven by the large economic losses associated with PRV infection, several vaccines and vaccine programs have been developed. To this day, the attenuated Bartha strain, generated by serial passaging, represents the golden standard for PRV vaccination.

View Article and Find Full Text PDF
Article Synopsis
  • Biomaterials can shape cell and nuclear structure, affecting gene expression and cell identity through their surface topography.
  • The study reveals that changes in nuclear morphology due to confinement lead to reduced histone acetylation and decreased gene expression associated with chromosome organization.
  • These effects on cell proliferation and stem cell multipotency are reversible, as returning cells to a flat surface restores their growth potential.
View Article and Find Full Text PDF

The currently used pharmacogenetic genotyping assays offer limited haplotype information, which can potentially cause specific functional effects to be missed. This study tested if Targeted Locus Amplification (TLA), when using non-patient-specific primers combined with Illumina or Nanopore sequencing, can offer an advantage in terms of accurate phasing. The TLA method selectively amplifies and sequences entire genes based on crosslinking DNA in close physical proximity.

View Article and Find Full Text PDF