The precise classification of copy number variants (CNVs) presents a significant challenge in genomic medicine, primarily due to the complex nature of CNVs and their diverse impact on rare genetic diseases (RGDs). This complexity is compounded by the limitations of existing methods in accurately distinguishing between benign, uncertain, and pathogenic CNVs. Addressing this gap, we introduce CNVoyant, a machine learning-based multi-class framework designed to enhance the clinical significance classification of CNVs.
View Article and Find Full Text PDFThe precise classification of copy number variants () presents a significant challenge in genomic medicine, primarily due to the complex nature of CNVs and their diverse impact on genetic disorders. This complexity is compounded by the limitations of existing methods in accurately distinguishing between benign, uncertain, and pathogenic CNVs. Addressing this gap, we introduce CNVoyant, a machine learning-based multi-class framework designed to enhance the clinical significance classification of CNVs.
View Article and Find Full Text PDFBackground: Genetic ancestry, inferred from genomic data, is a quantifiable biological parameter. While much of the human genome is identical across populations, it is estimated that as much as 0.4% of the genome can differ due to ancestry.
View Article and Find Full Text PDF