Publications by authors named "Defize L"

Novel and updated approaches of culturing cells in 3D are rapidly advancing our understanding of development, health, and disease. As tissues have been found to behave more realistically in 3D than in 2D cultures, organoid technology in combination with recent advances in the isolation and generation of stem cells, has rapidly become a promising concept in developmental and regenerative research. The development of all kinds of tissues can now be studied "in a dish," allowing more detailed observations of stem cell maintenance, morphogens, and differentiation.

View Article and Find Full Text PDF

Many different stem cell types have been shown to differentiate into cardiac muscle cells in vitro but P19 embryonal carcinoma (EC) cells were one of the first examples described and have been the most extensively characterized. P19 EC cells, isolated from an experimental embryo-derived teratocarcinoma in mice, are multipotent and can differentiate into cell types of all three germ layers. Because of their capacity to form cardiomyocytes however, they have been used to dissect the role of cardiac-specific transcription factors and upstream signalling pathways in cardiac cell differentiation.

View Article and Find Full Text PDF

Cotransfection of primary rat embryo fibroblasts (REF) with c-Jun and activated Ras leads to oncogenic transformation and this process requires the phosphorylation of the N-terminal domain of c-Jun. Ras augments this phosphorylation and, consequently activates the c-Jun transactivation property of TRE (TPA Responsive Element)-dependent promoters. To analyse the role of the c-Jun C-terminal phosphorylation site in oncogenic cooperation we tested the activities of N-terminal c-Jun Ala(63/73) (named Nt), C-terminal c-Jun Ala(234/242/246/252) (named Ct) and (Nt+Ct)-with both mutations-non-phosphorylatable c-Jun mutants.

View Article and Find Full Text PDF

Follistatin is a secreted protein, which functions as an antagonist of different members of the TGF-beta superfamily, including activin and bone morphogenetic proteins. Expression of follistatin is tightly regulated during mouse development both spatially and temporally. In order to study the regulation of follistatin expression in the mouse embryo we have cloned and analyzed part of the 5' flanking region of the murine follistatin gene.

View Article and Find Full Text PDF

In mouse development, parietal endoderm (PE) is formed from both primitive endoderm (PrE) and visceral endoderm (VE). This process can be mimicked in vitro by using F9 embryonal carcinoma cells (EC) cells, differentiated to PrE or VE cells, and treating these with Parathyroid Hormone related Peptide (PTHrP). By means of differential display RT-PCR, we identified Snail (Sna) as a gene upregulated during the differentiation from F9 PrE to PE.

View Article and Find Full Text PDF

Gap junctional communication permits the direct intercellular exchange of small molecules and ions. In vertebrates, gap junctions are formed by the conjunction of two connexons, each consisting of a hexamer of connexin proteins, and are either established or degraded depending on the nature of the tissue formed. Gap junction function has been implicated in both directing developmental cell fate decisions and in tissue homeostasis/metabolite exchange.

View Article and Find Full Text PDF

The formation of parietal endoderm (PE) from primitive endoderm (PrE) immediately after implantation of the early mouse embryo can be seen as the earliest example of an epithelio-mesenchyme transition (EMT) in murine development. Since EMT and EMI (epithelium-mesenchyme interactions) are at the very heart of morphogenesis, identifying molecular mechanisms governing these processes is of utmost importance. An excellent in vitro model system to study PE formation, i.

View Article and Find Full Text PDF

Signalling between cells in the developing vertebrate embryo is essential for normal embryonic development. In the mid 1970's, signal transduction research started at the Hubrecht Laboratory with special emphasis on analysis of the signalling mechanisms that direct cell proliferation and differentiation. The introduction of in vitro model systems contributed tremendously to the success of the signal transduction research at the Hubrecht Laboratory.

View Article and Find Full Text PDF

Previous work by us and others has implicated a role for Ral guanine exchange factors (RalGEFs) in Ras-induced cell growth and oncogenic transformation. Here we show for the first time that RalGEFs are involved in Ras-induced differentiation as well. Expression of oncogenic Ras in F9 embryonal carcinoma (EC) cells is known to induce differentiation to a primitive endoderm (PrE)-like phenotype, but the downstream signal transduction mechanisms involved are unclear.

View Article and Find Full Text PDF

We have shown previously that the PTH/PTHrP (PTH-related peptide) receptor mRNA becomes expressed very early in murine embryogenesis, i.e. during the formation of extraembryonic endoderm.

View Article and Find Full Text PDF

A number of studies suggest a role for PTHrP and the classical PTH/PTHrP receptor (type I) in one of the first differentiation processes in mouse embryogenesis, i.e. the formation of parietal endoderm (PE).

View Article and Find Full Text PDF

The formation of parietal endoderm (PE) is one of the first differentiation processes during mouse development and can be studied in vitro using F9 embryonal carcinoma (EC) cells. Treatment of F9 EC cells with retinoic acid (RA) induces differentiation toward primitive endoderm (PrE), while differentiation toward PE is induced by subsequent addition of parathyroid hormone (PTH) or PTH-related peptide (PTHrP). The signal transduction mechanisms involved in this two-step process are largely unclear.

View Article and Find Full Text PDF

Wnt mediated signal transduction is considered to regulate activity of target genes. In Xenopus embryos, ectopic Wnt1 and Wnt8 expression induces gap-junctional communication. During murine brain formation, Wnt1 and the gap-junctional protein connexin43 (Cx43) are co-expressed at the mid/hindbrain border, while interference with Wnt1 or Cx43 expression during embryogenesis leads to severe brain defects in the mid/hindbrain region.

View Article and Find Full Text PDF

Differentiation of P19 embryonal carcinoma (EC) and embryonal stem (ES)-5 cells with retinoic acid (RA) induces expression of PTH-related peptide (PTHrP) mRNA. In this study we have characterized a region between nucleotide (nt) -88 and -58 relative to the transcription start site in the murine PTHrP gene that was involved in this expression. Sequence analysis identified two partially overlapping binding sites for the Ets family of transcription factors and an inverted Sp1-binding site.

View Article and Find Full Text PDF

The PTH/PTHrP receptor gene is expressed in bone and kidney as well as in many other tissues. Using primer extension followed by rapid cloning of amplified complementary DNA ends, we have isolated new PTH/PTHrP receptor complementary DNAs with different splicing patterns and have characterized a new upstream transcription start site. Three 5' nontranslated exons, U3, U2 and U1, located 4.

View Article and Find Full Text PDF

In a previous study, we demonstrated that parathyroid hormone (PTH) inhibits mitogen-activated protein (MAP) kinase activation in osteosarcoma cells via a protein kinase A-dependent pathway. Here, we show that PTH can induce a transient activation of MAP kinase as well. This was observed in both Chinese hamster ovary R15 cells stably expressing high levels of rat PTH/PTH-related peptide receptor and parietal yolk sac carcinoma cells expressing the receptor endogenously.

View Article and Find Full Text PDF

The PTH/PTHrP receptor binds to two ligands with distinct functions: the calcium-regulating hormone, parathyroid hormone (PTH), and the paracrine factor, PTH-related protein (PTHrP). Each ligand, in turn, is likely to activate more than one receptor. The functions of the PTH/PTHrP receptor were investigated by deletion of the murine gene by homologous recombination.

View Article and Find Full Text PDF

In this study we describe the spatio-temporal expression of Parathyroid Hormone related Peptide (PTHrP) mRNA during murine postimplantation development from day 5.5 post coitum (pc) until day 12.5 pc.

View Article and Find Full Text PDF

Phospholipase A2 (PLA2) is a key enzyme in the release of arachidonic acid and subsequent production of eicosanoids, which play an important role in a variety of biological processes, including mitogenic signalling by epidermal growth factor (EGF). In a previous study [Spaargaren, M. et al.

View Article and Find Full Text PDF

Osteoblast-like cells, such as UMR 106 osteosarcoma cells, are known to be growth stimulated by growth factors such as EGF. In contrast, factors such as PTH and prostaglandin E2 inhibit their growth. The exact signal transduction mechanisms by which these latter factors act remain to be elucidated.

View Article and Find Full Text PDF

In this paper we describe the cloning of the mouse Parathyroid Hormone/Parathyroid Hormone related Peptide Receptor (PTH/PTHrPR) cDNA and expression of its mRNA during mouse postimplantation development from day 5.5 until day 15.5 post coitum (p.

View Article and Find Full Text PDF

The organization of the PTH/PTHrP receptor gene is highly homologous in three mammalian species, rat, human and mouse. This gene extends over 22 kb and contains at least 15 exons and 14 introns. The most 5' exon we have identified (exon U) is followed by an approximately 1kb intron.

View Article and Find Full Text PDF

Expression of immediate-early genes involving the 12-O-tetradecanoyl phorbol 13-acetate (TPA)-responsive element (TRE) is modulated by post-translational modification of pre-existing activator protein 1 (AP-1) constituents. One of the components of AP-1, c-Jun, has been shown to be phosphorylated by glycogen synthase kinase 3 (GSK-3) in vitro in a region proximal to the DNA-binding domain, resulting in decreased DNA binding. Here, we have used transient transfection to show that AP-1 activity is inhibitable by coexpression of GSK-3 in intact cells.

View Article and Find Full Text PDF

Parathyroid hormone related peptide (PTHrP), first identified in tumors from patients with the syndrome of "Humoral Hypercalcemia of Malignancy," can replace parathyroid hormone (PTH) in activating the PTH-receptor in responsive cells. Although PTHrP expression is widespread in various adult and fetal tissues, its normal biological function is as yet unknown. We have examined the possible role of PTHrP and the PTH/PTHrP-receptor in early mouse embryo development.

View Article and Find Full Text PDF