Motivated by recent efforts to develop quantum computing for practical, industrial-scale challenges, we demonstrate the effectiveness of state-of-the-art hybrid (not necessarily quantum) solvers in addressing the business-centric optimization problem of scheduling Automatic Guided Vehicles (AGVs). Some solvers can already leverage noisy intermediate-scale quantum (NISQ) devices. In our study, we utilize D-Wave hybrid solvers that implement classical heuristics with potential assistance from a quantum processing unit.
View Article and Find Full Text PDFWe demonstrate the unique capabilities of the Wigner function, particularly in its positive and negative parts, for exploring the phase diagram of the spin -(1/2-1/2) and spin-(1/2-1) Ising-Heisenberg chains. We highlight the advantages and limitations of the phase-space approach in comparison with the entanglement concurrence in detecting phase boundaries. We establish that the equal angle slice approximation in the phase space is an effective method for capturing the essential features of the phase diagram but falls short in accurately assessing the negativity of the Wigner function for the homogeneous spin-(1/2-1/2) Ising-Heisenberg chain.
View Article and Find Full Text PDFIt is a well-understood fact that the transport of excitations throughout a lattice is intimately governed by the underlying structures. Hence, it is only natural to recognize that the dispersion of information also has to depend on the lattice geometry. In the present work, we demonstrate that two-dimensional lattices described by the Bose-Hubbard model exhibit information scrambling for systems as little as two hexagons.
View Article and Find Full Text PDFWe investigate the computational efficiency and thermodynamic cost of the D-Wave quantum annealer under reverse-annealing with and without pausing. Our demonstration on the D-Wave 2000Q annealer shows that the combination of reverse-annealing and pausing leads to improved computational efficiency while minimizing the thermodynamic cost compared to reverse-annealing alone. Moreover, we find that the magnetic field has a positive impact on the performance of the quantum annealer during reverse-annealing but becomes detrimental when pausing is involved.
View Article and Find Full Text PDFQuantum Darwinism explains the emergence of classical objectivity within a quantum universe. However, to date, most research on quantum Darwinism has focused on specific models and their stationary properties. To further our understanding of the quantum-to-classical transition, it appears desirable to identify the general criteria a Hamiltonian has to fulfill to support classical reality.
View Article and Find Full Text PDFWe are in the noisy intermediate-scale quantum (NISQ) devices' era, in which quantum hardware has become available for application in real-world problems. However, demonstrations of the usefulness of such NISQ devices are still rare. In this work, we consider a practical railway dispatching problem: delay and conflict management on single-track railway lines.
View Article and Find Full Text PDFThe operation of near-term quantum technologies requires the development of feasible, implementable, and robust strategies of controlling complex many body systems. To this end, a variety of techniques, so-called "shortcuts to adiabaticity," have been developed. Many of these shortcuts have already been demonstrated to be powerful and implementable in distinct scenarios.
View Article and Find Full Text PDFWe establish bounds on quantum correlations in many-body systems. They reveal what sort of information about a quantum system can be simultaneously recorded in different parts of its environment. Specifically, independent agents who monitor environment fragments can eavesdrop only on amplified and redundantly disseminated-hence, effectively classical-information about the decoherence-resistant pointer observable.
View Article and Find Full Text PDFWhile quantum phase transitions share many characteristics with thermodynamic phase transitions, they are also markedly different as they occur at zero temperature. Hence, it is not immediately clear whether tools and frameworks that capture the properties of thermodynamic phase transitions also apply in the quantum case. Concerning the crossing of thermodynamic critical points and describing its non-equilibrium dynamics, the Kibble-Zurek mechanism and linear response theory have been demonstrated to be among the very successful approaches.
View Article and Find Full Text PDFLinear irreversible thermodynamics predicts that the entropy production rate can become negative. We demonstrate this prediction for metals under AC driving whose conductivity is well described by the Drude-Sommerfeld model. We then show that these negative rates are fully compatible with stochastic thermodynamics, namely, that the entropy production does fulfill a fluctuation theorem.
View Article and Find Full Text PDF"How much information about a system S can one extract from a fragment F of the environment E that decohered it?" is the central question of Quantum Darwinism. To date, most answers relied on the quantum mutual information of SF, or on the Holevo bound on the channel capacity of F to communicate the classical information encoded in S. These are reasonable upper bounds on what is really needed but much harder to calculate-the accessible information in the fragment F about S.
View Article and Find Full Text PDFEnvariance is a symmetry exhibited by correlated quantum systems. Inspired by this "quantum fact of life," we propose a novel method for shortcuts to adiabaticity, which enables the system to evolve through the adiabatic manifold at all times, solely by controlling the environment. As the main results, we construct the unique form of the driving on the environment that enables such dynamics, for a family of composite states of arbitrary dimension.
View Article and Find Full Text PDFThe quantum ergotropy quantifies the maximal amount of work that can be extracted from a quantum state without changing its entropy. Given that the ergotropy can be expressed as the difference of quantum and classical relative entropies of the quantum state with respect to the thermal state, we define the classical ergotropy, which quantifies how much work can be extracted from distributions that are inhomogeneous on the energy surfaces. A unified approach to treat both quantum as well as classical scenarios is provided by geometric quantum mechanics, for which we define the geometric relative entropy.
View Article and Find Full Text PDFIn classical thermodynamics the Euler relation is an expression for the internal energy as a sum of the products of canonical pairs of extensive and intensive variables. For quantum systems the situation is more intricate, since one has to account for the effects of the measurement back action. To this end, we derive a quantum analog of the Euler relation, which is governed by the information retrieved by local quantum measurements.
View Article and Find Full Text PDFIt is commonly accepted that in typical situations the rate of entropy production is non-negative. We show that this assertion is not entirely correct, not even in the linear regime, if a time-dependent, external perturbation is not compensated by a rapid enough decay of the response function. This is demonstrated for three variants of the Drude model to describe electrical conduction in noble metals, namely the classical free electron gas, the Drude-Sommerfeld model, and the extended Drude-Sommerfeld model.
View Article and Find Full Text PDFOnly very recently, rescaling time has been recognized as a way to achieve adiabatic dynamics in fast processes. The advantage of time-rescaling over other shortcuts to adiabaticity is that it does not depend on the eigenspectrum and eigenstates of the Hamiltonian. However, time-rescaling requires that the original dynamics are adiabatic, and in the rescaled time frame, the Hamiltonian exhibits non-trivial time-dependence.
View Article and Find Full Text PDFA remarkable feature of quantum many-body systems is the orthogonality catastrophe that describes their extensively growing sensitivity to local perturbations and plays an important role in condensed matter physics. Here we show that the dynamics of the orthogonality catastrophe can be fully characterized by the quantum speed limit and, more specifically, that any quenched quantum many-body system, whose variance in ground state energy scales with the system size, exhibits the orthogonality catastrophe. Our rigorous findings are demonstrated by two paradigmatic classes of many-body systems-the trapped Fermi gas and the long-range interacting Lipkin-Meshkov-Glick spin model.
View Article and Find Full Text PDFWe examine a quantum Otto engine with a harmonic working medium consisting of two particles to explore the use of wave function symmetry as an accessible resource. It is shown that the bosonic system displays enhanced performance when compared to two independent single particle engines, while the fermionic system displays reduced performance. To this end, we explore the trade-off between efficiency and power output and the parameter regimes under which the system functions as engine, refrigerator, or heater.
View Article and Find Full Text PDFThe design and implementation of quantum technologies necessitates the understanding of thermodynamic processes in the quantum domain. In stark contrast to macroscopic thermodynamics, at the quantum scale processes generically operate far from equilibrium and are governed by fluctuations. Thus, experimental insight and empirical findings are indispensable in developing a comprehensive framework.
View Article and Find Full Text PDFRecent years have seen a flurry of research activity in the study of minimal and autonomous information ratchets. However, the existing classical and quantum models are somewhat hard to compare and hence quantifying possible quantum supremacy in information ratchets has been elusive. We propose a step towards filling this void between quantum and classical ratchets by introducing a model with continuous variables: a quantum particle in a box coupled to a stream of qubits.
View Article and Find Full Text PDFNear term quantum hardware promises unprecedented computational advantage. Crucial in its development is the characterization and minimization of computational errors. We propose the use of the quantum fluctuation theorem to benchmark the accuracy of quantum annealers.
View Article and Find Full Text PDFRecent experimental breakthroughs produced the first nano heat engines that have the potential to harness quantum resources. An instrumental question is how their performance measures up against the efficiency of classical engines. For single ion engines undergoing quantum Otto cycles it has been found that the efficiency at maximal power is given by the Curzon-Ahlborn efficiency.
View Article and Find Full Text PDFIf a system is driven at finite rate through a phase transition by varying an intensive parameter, the order parameter shatters into finite domains. The Kibble-Zurek mechanism predicts the typical size of these domains, which are governed only by the rate of driving and the spatial and dynamical critical exponents. We show that also the irreversible entropy production fulfills a universal behavior, which however is determined by an additional critical exponent corresponding to the intensive control parameter.
View Article and Find Full Text PDF