Publications by authors named "Deffieux T"

The quantification and modeling of gel fracture under large strain and dissipative conditions is still an open issue. In this study, a novel method for investigating the mechanical behavior of gels under highly deformed states, specifically in the vicinity of the crack tip, was developed to gain insights into fracture processes. Shear wave elastography, originally developed for the biomedical community, is employed as a powerful tool to quantitatively map the local elasticity of model gels.

View Article and Find Full Text PDF

Subarachnoid hemorrhage (SAH) can be associated with neurological deficits and has profound consequences for mortality and morbidity. Cerebral vasospasm (CVS) and delayed cerebral ischemia affect neurological outcomes in SAH patients, but their mechanisms are not fully understood, and effective treatments are limited. Here, we report that urotensin II receptor UT plays a pivotal role in both early events and delayed mechanisms following SAH in male mice.

View Article and Find Full Text PDF

Non-invasive in vivo imaging of the vasculature is a powerful tool for studying disease mechanisms in rodents. To achieve high sensitivity imaging of the microvasculature using Doppler ultrasound methods, imaging modalities employing the concept of ultrafast imaging are preferred. By increasing the frame rate of the ultrasound scanner to thousands of frames per second, it becomes possible to improve the sensitivity of the blood flow down to 2 mm/s and to obtain functional information about the microcirculation in comparison to a sensitivity of around 1 cm/s in conventional Doppler modes.

View Article and Find Full Text PDF

3D Imaging of the human heart at high frame rate is of major interest for various clinical applications. Electronic complexity and cost has prevented the dissemination of 3D ultrafast imaging into the clinic. Row column addressed (RCA) transducers provide volumetric imaging at ultrafast frame rate by using a low electronic channel count, but current models are ill-suited for transthoracic cardiac imaging due to field-of-view limitations.

View Article and Find Full Text PDF

Recanalization is the mainstay of ischemic stroke treatment. However, even with timely clot removal, many stroke patients recover poorly. Leptomeningeal collaterals (LMCs) are pial anastomotic vessels with yet-unknown functions.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are studying how the brain processes temperature signals, focusing on the spinal cord's dorsal horn as the initial point for encoding this thermal information.
  • Using functional ultrasound imaging, the study observed brain activity in awake male mice exposed to different temperatures, uncovering a unique response pattern between the somatomotor-cingulate cortices and the hypothalamus.
  • The findings suggest that the brain has a shared hub for processing temperature sensations, with the cingulate areas linked to emotional responses, especially during colder temperatures, which disrupts connectivity with the hypothalamus.
View Article and Find Full Text PDF

Tomographic perfusion imaging techniques are integral to translational stroke research paradigms that advance our understanding of the disease. Functional ultrasound (fUS) is an emerging technique that informs on cerebral blood volume (CBV) through ultrasensitive Doppler and flow velocity (CBFv) through ultrafast localization microscopy. It is not known how experimental results compare with a classical CBV-probing technique such as dynamic susceptibility contrast-enhanced perfusion MRI (DSC-MRI).

View Article and Find Full Text PDF

Brain-machine interfaces (BMIs) enable people living with chronic paralysis to control computers, robots and more with nothing but thought. Existing BMIs have trade-offs across invasiveness, performance, spatial coverage and spatiotemporal resolution. Functional ultrasound (fUS) neuroimaging is an emerging technology that balances these attributes and may complement existing BMI recording technologies.

View Article and Find Full Text PDF

To better understand how the brain allows primates to perform various sets of tasks, the ability to simultaneously record neural activity at multiple spatiotemporal scales is challenging but necessary. However, the contribution of single-unit activities (SUAs) to neurovascular activity remains to be fully understood. Here, we combine functional ultrasound imaging of cerebral blood volume (CBV) and SUA recordings in visual and fronto-medial cortices of behaving macaques.

View Article and Find Full Text PDF

Fifty million people worldwide are affected by dementia, a heterogeneous neurodegenerative condition encompassing diseases such as Alzheimer's, vascular dementia, and Parkinson's. For them, cognitive decline is often the first marker of the pathology after irreversible brain damage has already occurred. Researchers now believe that structural and functional alterations of the brain vasculature could be early precursors of the diseases and are looking at how functional imaging could provide an early diagnosis years before irreversible clinical symptoms.

View Article and Find Full Text PDF

Ultrafast ultrasound is an emerging imaging modality derived from standard medical ultrasound. It allows for a high spatial resolution of 100 μm and a temporal resolution in the millisecond range with techniques such as ultrafast Doppler imaging. Ultrafast Doppler imaging has become a priceless tool for neuroscience, especially for visualizing functional vascular structures and navigating the brain in real time.

View Article and Find Full Text PDF

Spreading depolarization, usually termed cortical spreading depression has been proposed as the pathophysiological substrate of migraine aura and as an endogenous trigger of headache pain. The links between neurovascular coupling and cortical craniofacial nociceptive activities modulated by SD were assessed by combining local field potential (LFP) recordings in the primary somatosensory cortex (S1) with functional ultrasound imaging of S1 and caudal insular (INS) cortices of anesthetized male rats. A single SD wave triggered in the primary visual cortex elicited an ipsilateral, quadriphasic hemodynamic and electrophysiological response in S1 with an early phase consisting of concomitant increases of relative cerebral blood volume (rCBV) and LFPs.

View Article and Find Full Text PDF

Background: Direct assessment of the coronary microcirculation has long been hampered by the limited spatial and temporal resolutions of cardiac imaging modalities.

Objectives: The purpose of this study was to demonstrate 3-dimensional (3D) coronary ultrasound localization microscopy (CorULM) of the whole heart beyond the acoustic diffraction limit (<20 μm resolution) at ultrafast frame rate (>1000 images/s).

Methods: CorULM was performed in isolated beating rat hearts (N = 6) with ultrasound contrast agents (Sonovue, Bracco), using an ultrasonic matrix transducer connected to a high channel-count ultrafast electronics.

View Article and Find Full Text PDF

In both human and nonhuman primates (NHP), the medial prefrontal region, defined as the supplementary eye field (SEF), can indirectly influence behavior selection through modulation of the primary selection process in the oculomotor structures. To perform this oculomotor control, SEF integrates multiple cognitive signals such as attention, memory, reward, and error. As changes in pupil responses can assess these cognitive efforts, a better understanding of the precise dynamics by which pupil diameter and medial prefrontal cortex activity interact requires thorough investigations before, during, and after changes in pupil diameter.

View Article and Find Full Text PDF

Background: Non-invasive high-resolution imaging of the cerebral vascular anatomy and function is key for the study of intracranial aneurysms, stenosis, arteriovenous malformations, and stroke, but also neurological pathologies, such as degenerative diseases. Direct visualization of the microvascular networks in the whole brain remains however challenging in vivo.

Methods: In this work, we performed 3D ultrafast ultrasound localization microscopy (ULM) using a 2D ultrasound matrix array and mapped the whole-brain microvasculature and flow at microscopic resolution in C57Bl6 mice in vivo.

View Article and Find Full Text PDF

Acute spinal cord injury (SCI) leads to severe damage to the microvascular network. The process of spontaneous repair is accompanied by formation of new blood vessels; their functionality, however, presumably very important for functional recovery, has never been clearly established, as most studies so far used fixed tissues. Here, combining ultrafast Doppler imaging and ultrasound localization microscopy (ULM) on the same animals, we proceeded at a detailed analysis of structural and functional vascular alterations associated with the establishment of chronic SCI, both at macroscopic and microscopic scales.

View Article and Find Full Text PDF
Article Synopsis
  • The study tackled the difficult task of imaging the trigeminal ganglion (TG), a small and deep-seated structure, by combining advanced imaging techniques to analyze blood flow and respond to orofacial stimuli in rats.
  • Functional ultrasound imaging successfully captured strong hemodynamic responses in the TG, linked to various mechanical and chemical stimulations of nociceptive fibers in the face, highlighting the area’s sensitivity despite the limited number of sensory neurons.
  • This innovative imaging method not only visualized the vasculature of the TG but also offers new insights for understanding the mechanisms of trigeminal pain, paving the way for future research in treatment options.
View Article and Find Full Text PDF

Absence of the astrocyte-specific membrane protein MLC1 is responsible for megalencephalic leukoencephalopathy with subcortical cysts (MLC), a rare type of leukodystrophy characterized by early-onset macrocephaly and progressive white matter vacuolation that lead to ataxia, spasticity, and cognitive decline. During postnatal development (from P5 to P15 in the mouse), MLC1 forms a membrane complex with GlialCAM (another astrocytic transmembrane protein) at the junctions between perivascular astrocytic processes. Perivascular astrocytic processes along with blood vessels form the gliovascular unit.

View Article and Find Full Text PDF

The rise of ultrafast ultrasound imaging-with plane or diverging waves - paved the way to new applications of ultrasound in biomedical applications. However, propagation through complex layers (typically fat, muscle, and bone) hinder considerably the image quality, especially because of sound speed heterogeneities. In difficult-to-image patients, in the case of the hepatic steatosis for instance, a good image and a reliable sound speed quantification are crucial to provide a powerful non-invasive diagnosis tool.

View Article and Find Full Text PDF

Recent advances in ultrasound imaging triggered by transmission of ultrafast plane waves have rendered functional ultrasound (fUS) imaging a valuable neuroimaging modality capable of mapping cerebral vascular networks, but also for the indirect capture of neuronal activity with high sensitivity thanks to the neurovascular coupling. However, the expansion of fUS imaging is still limited by the difficulty to identify cerebral structures during experiments based solely on the Doppler images and the shape of the vessels. In order to tackle this challenge, this study introduces the vascular brain positioning system (BPS), a GPS of the brain.

View Article and Find Full Text PDF

Row column addressing (RCA) transducers have the potential to provide volumetric imaging at ultrafast frame rate using a low channel count over a large field of view. In previous works we have shown that vascular imaging of large arteries as well as functional neuroimaging of the rat brain were feasible using RCA orthogonal plane wave imaging (OPW), but these applications required to transmit many plane waves, significantly reducing the frame rate. In this study, we introduce XDoppler imaging, a novel method to increase the performances of RCA flow imaging by taking advantage of the blood spatial decorrelation statistics combined with the limited spatial overlap of the point spread functions (PSF) of the two orthogonal apertures of the RCA transducer.

View Article and Find Full Text PDF
Article Synopsis
  • The study looked at a special protein called Zeb2, which helps liver cells stay healthy and prevents scarring in the liver.
  • Researchers created mice without Zeb2 in their liver cells and found that these mice had changes in blood vessel formation and increased scarring when exposed to a harmful chemical.
  • Overall, Zeb2 is important for keeping the liver's structure intact and protecting it from damage.
View Article and Find Full Text PDF

Ultrasound sensitivity to slow blood flow motion gained two orders of magnitude in the last decade thanks to the advent of ultrafast ultrasound imaging at thousands of frames per second. In neuroscience, this access to small cerebral vessels flow led to the introduction of ultrasound as a new and full-fledged neuroimaging modality. Much as functional MRI or functional optical imaging, functional Ultrasound (fUS) takes benefit of the neurovascular coupling.

View Article and Find Full Text PDF

Functional ultrasound (fUS) imaging is a novel brain imaging modality that relies on the high-sensitivity measure of the cerebral blood volume achieved by ultrafast doppler angiography. As brain perfusion is strongly linked to local neuronal activity, this technique allows the whole-brain 3D mapping of task-induced regional activation as well as resting-state functional connectivity, non-invasively, with unmatched spatio-temporal resolution and operational simplicity. In comparison with fMRI (functional magnetic resonance imaging), a main advantage of fUS imaging consists in enabling a complete compatibility with awake and behaving animal experiments.

View Article and Find Full Text PDF