Publications by authors named "Defen Lu"

The cGAS-STING pathway plays a crucial role in the innate immune system by detecting mislocalized double-stranded DNA (dsDNA) in the cytoplasm and triggering downstream signal transduction. Understanding the mechanisms by which cGAS and STING operate is vital for gaining insights into the biology of this pathway. This review provides a detailed examination of the structural features of cGAS and STING proteins, with a particular emphasis on their activation and inhibition mechanisms.

View Article and Find Full Text PDF

The cGAS/STING pathway triggers inflammation upon diverse cellular stresses such as infection, cellular damage, aging, and diseases. STING also triggers noncanonical autophagy, involving LC3 lipidation on STING vesicles through the V-ATPase-ATG16L1 axis, as well as induces cell death. Although the proton pump V-ATPase senses organelle deacidification in other contexts, it is unclear how STING activates V-ATPase for noncanonical autophagy.

View Article and Find Full Text PDF

The spike protein (S) of SARS-CoV-2 is the major target of neutralizing antibodies and vaccines. Antibodies that target the receptor-binding domain (RBD) of S have high potency in preventing viral infection. The ongoing evolution of SARS-CoV-2, especially mutations occurring in the RBD of new variants, has severely challenged the development of neutralizing antibodies and vaccines.

View Article and Find Full Text PDF

2',3'-cGAMP, produced by the DNA sensor cGAS, activates stimulator of interferon genes (STING) and triggers immune response during infection. Tremendous effort has been placed on unraveling the mechanism of STING activation. However, little is known about STING inhibition.

View Article and Find Full Text PDF
Article Synopsis
  • The FAM46 proteins, known for regulating RNA stability, are noncanonical poly(A) polymerases whose mechanisms are largely unknown.
  • BCCIPα, a nuclear protein, specifically binds to FAM46 and inhibits their poly(A) polymerase activity, while BCCIPβ does not exhibit this interaction.
  • Structural analysis reveals that BCCIPα has a unique conformation compared to BCCIPβ that allows it to effectively inhibit FAM46's activity by inserting into its active site cleft.
View Article and Find Full Text PDF

The cGAS-cGAMP-STING pathway is an important innate immune signaling cascade responsible for the sensing of abnormal cytosolic double-stranded DNA (dsDNA), which is a hallmark of infection or cancers. Recently, tremendous progress has been made in the understanding of the STING activation mechanism from various aspects. In this review, the molecular mechanism of activation of STING protein based on its structural features is briefly discussed.

View Article and Find Full Text PDF

Stimulator of interferon genes (STING) is an adaptor protein in innate immunity against DNA viruses or bacteria. STING-mediated immunity could be exploited in the development of vaccines or cancer immunotherapies. STING is a transmembrane dimeric protein that is located in the endoplasmic reticulum or in the Golgi apparatus.

View Article and Find Full Text PDF

Secreted class 3 semaphorins (Sema3s) form tripartite complexes with the plexin receptor and neuropilin coreceptor, which are both transmembrane proteins that together mediate semaphorin signal for neuronal axon guidance and other processes. Despite extensive investigations, the overall architecture of and the molecular interactions in the Sema3/plexin/neuropilin complex are incompletely understood. Here we present the cryo-EM structure of a near intact extracellular region complex of Sema3A, PlexinA4 and Neuropilin 1 (Nrp1) at 3.

View Article and Find Full Text PDF

FAM46C, a non-canonical poly(A) polymerase, is frequently mutated in multiple myeloma. Loss of function of FAM46C promotes cell survival of multiple myeloma, suggesting a tumor-suppressive role. FAM46C is also essential for fastening sperm head and flagellum, indispensable for male fertility.

View Article and Find Full Text PDF

The cyclic dinucleotide (CDN)-imulator of terferon enes (STING) pathway plays an important role in the detection of viral and bacterial pathogens in animals. Previous studies have shown that the metazoan second messenger cyclic [G(2',5')pA(3',5')p] (2',3'-cGAMP) generated by cyclic GMP-AMP synthase cGAS binds STING with high affinity compared with bacterial CDNs such as c-di-GMP, c-di-AMP, and 3',3'-cGAMP. Despite recent progress indicating that the CDN-binding domain (CBD) of dimeric STING binds asymmetric 2',3'-cGAMP preferentially over symmetric 3',3'-CDNs, it remains an open question whether STING molecules, such as human STING, adopt a symmetric dimeric conformation to efficiently engage its asymmetric ligand.

View Article and Find Full Text PDF

The GIPC family adaptor proteins mediate endocytosis by tethering cargo proteins to the myosin VI motor. The structural mechanisms for the GIPC/cargo and GIPC/myosin VI interactions remained unclear. PlexinD1, a transmembrane receptor that regulates neuronal and cardiovascular development, is a cargo of GIPCs.

View Article and Find Full Text PDF

The type VI secretion system (T6SS) has recently been demonstrated to mediate interbacterial competition and to discriminate between self and nonself. T6SS(+) bacteria employ toxic effectors to inhibit rival cells and concurrently use effector cognate immunity proteins to protect their sibling cells. The effector and immunity pairs (E-I pairs) endow the bacteria with a great advantage in niche competition.

View Article and Find Full Text PDF

Cyclic dinucleotides are a newly expanded class of second messengers that contribute to the regulation of multiple different pathways in bacterial, eukaryotic, and archaeal cells. The recently identified Vibrio cholerae dinucleotide cyclase (DncV, the gene product of VC0179) can generate three different cyclic dinucleotides and preferentially synthesize a hybrid cyclic-GMP-AMP. Here, we report the crystal structural and functional studies of DncV.

View Article and Find Full Text PDF

The opportunistic pathogen Pseudomonas aeruginosa uses the type VI secretion system (T6SS) to deliver the muramidase Tse3 into the periplasm of rival bacteria to degrade their peptidoglycan (PG). Concomitantly, P. aeruginosa uses the periplasm-localized immunity protein Tsi3 to prevent potential self-intoxication caused by Tse3, and thus gains an edge over rival bacteria in fierce niche competition.

View Article and Find Full Text PDF

Pseudomonas aeruginosa uses the type VI secretion system (T6SS) to inject effector proteins into rival cells in niche competition. Tse3, one of the effectors of T6SS, is delivered into the periplasm of recipient cells. Tse3 functions as a muramidase that degrades the β-1,4-linkage between N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) in peptidoglycan, thus leading to lysis of the recipient cells and providing a competitive advantage to the donor cells.

View Article and Find Full Text PDF

Cullin 4B (CUL4B) is a scaffold protein involved in the assembly of cullin-RING ubiquitin ligase (E3) complexes. Contemporary reports have identified multiple mutations of CUL4B gene as being causally associated with X-linked intellectual disability (XLID). Identifying the specific protein substrates will help to better understand the physiological functions of CUL4B.

View Article and Find Full Text PDF

Tse1 (Tse is type VI secretion exported), an effector protein produced by Pseudomonas aeruginosa, is an amidase that hydrolyses the γ-D-glutamyl-DAP (γ-D-glutamyl-L-meso-diaminopimelic acid) linkage of the peptide bridge of peptidoglycan. P. aeruginosa injects Tse1 into the periplasm of recipient cells, degrading their peptidoglycan, thereby helping itself to compete with other bacteria.

View Article and Find Full Text PDF

STING functions as both an adaptor protein signaling cytoplasmic double-stranded DNA and a direct immunosensor of cyclic diguanylate monophosphate (c-di-GMP). The crystal structures of the C-terminal domain of human STING (STING(CTD)) and its complex with c-di-GMP reveal how STING recognizes c-di-GMP. In response to c-di-GMP binding, two surface loops, which serve as a gate and latch of the cleft formed by the dimeric STING(CTD), undergo rearrangements to interact with the ligand.

View Article and Find Full Text PDF

The intracellular pathogen Legionella pneumophila hijacks the endoplasmic reticulum (ER)-derived vesicles to create an organelle designated Legionella-containing vacuole (LCV) required for bacterial replication. Maturation of the LCV involved acquisition of Rab1, which is mediated by the bacterial effector protein SidM/DrrA. SidM/DrrA is a bifunctional enzyme having the activity of both Rab1-specific GDP dissociation inhibitor (GDI) displacement factor (GDF) and guanine nucleotide exchange factor (GEF).

View Article and Find Full Text PDF

Cullin 4B (CUL4B) is a scaffold protein that assembles cullin-RING ubiquitin ligase (E3) complexes. Recent studies have revealed that germ-line mutations in CUL4B can cause mental retardation, short stature, and many other abnormalities in humans. Identifying specific CUL4B substrates will help to better understand the physiological functions of CUL4B.

View Article and Find Full Text PDF

CUL4A and CUL4B, which are derived from the same ancestor, CUL4, encode scaffold proteins that organize cullin-RING ubiquitin ligase (E3) complexes. Recent genetic studies have shown that germ line mutation in CUL4B can cause mental retardation, short stature, and other abnormalities in humans. CUL4A was observed to be overexpressed in breast and hepatocellular cancers, although no germ line mutation in human CUL4A has been reported.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9dtcfm54fmic3earn24msh8m2pi30pg2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once