Publications by authors named "Defazio R"

Pulsatile gonadotropin-releasing hormone (GnRH) release is critical for reproduction. Disruptions to GnRH secretion patterns may contribute to polycystic ovary syndrome (PCOS). Prenatally androgenized (PNA) female mice recapitulate many neuroendocrine abnormalities observed in PCOS patients.

View Article and Find Full Text PDF

Astrocytes play active roles at synapses and can monitor, respond, and adapt to local synaptic activity. While there is abundant evidence that astrocytes modulate excitatory transmission in the hippocampus, evidence for astrocytic modulation of hippocampal synaptic inhibition remains more limited. Furthermore, to better investigate roles for astrocytes in modulating synaptic transmission, more tools that can selectively activate native G protein signaling pathways in astrocytes with both spatial and temporal precision are needed.

View Article and Find Full Text PDF

Infectious pneumonia induced by multidrug resistant (MDR) Acinetobacter baumannii strains is among the most common and deadly forms of healthcare acquired infections. Over the years, different strategies have been put in place to increase host susceptibility to MDR A. baumannii, since only a self-limiting pneumonia with no or limited local bacterial replication was frequently obtained in mouse models.

View Article and Find Full Text PDF

Kisspeptin-expressing neurons in the anteroventral-periventricular nucleus (AVPV) are part of a neural circuit generating the gonadotropin-releasing hormone (GnRH) surge. This process is estradiol-dependent and occurs on the afternoon of proestrus in female mice. On proestrus, AVPV kisspeptin neurons express more kisspeptin and exhibit higher frequency action potentials and burst firing compared with diestrus, which is characterized by a pulsatile rather than a prolonged surge of GnRH secretion.

View Article and Find Full Text PDF

GnRH neurons are the final central neural output regulating fertility. Kisspeptin neurons in the hypothalamic arcuate nucleus (KNDy neurons) are considered the main regulator of GnRH output. GnRH and KNDy neurons are surrounded by astrocytes, which can modulate neuronal activity and communicate over distances.

View Article and Find Full Text PDF

Gonadotropin-releasing hormone (GnRH) drives pituitary secretion of luteinizing hormone and follicle-stimulating hormone, which in turn regulate gonadal functions including steroidogenesis. The pattern of GnRH release and thus fertility depend on gonadal steroid feedback. Under homeostatic (negative) feedback conditions, removal of the gonads from either females or males increases the amplitude and frequency of GnRH release and alters the long-term firing pattern of these neurons in brain slices.

View Article and Find Full Text PDF

Gonadotropin-releasing hormone (GnRH) neurons form the final pathway for the central neuronal control of fertility. GnRH is released in pulses that vary in frequency in females, helping drive hormonal changes of the reproductive cycle. In the common fertility disorder polycystic ovary syndrome (PCOS), persistent high-frequency hormone release is associated with disrupted cycles.

View Article and Find Full Text PDF

Gonadotropin-releasing hormone (GnRH) neurons control anterior pituitary, and thereby gonadal, function. GnRH neurons are active before outward indicators of puberty appear. Prenatal androgen (PNA) exposure mimics reproductive dysfunction of the common fertility disorder polycystic ovary syndrome (PCOS) and reduces prepubertal GnRH neuron activity.

View Article and Find Full Text PDF

Synaptic and intrinsic properties interact to sculpt neuronal output. Kisspeptin neurons in the hypothalamic arcuate nucleus help convey homeostatic estradiol feedback to central systems controlling fertility. Estradiol increases membrane depolarization induced by GABA receptor activation in these neurons.

View Article and Find Full Text PDF

Central output of gonadotropin-releasing hormone (GnRH) neurons controls fertility and is sculpted by sex-steroid feedback. A switch of estradiol action from negative to positive feedback initiates a surge of GnRH release, culminating in ovulation. In ovariectomized mice bearing constant-release estradiol implants (OVX+E), GnRH neuron firing is suppressed in the morning (AM) by negative feedback and activated in the afternoon (PM) by positive feedback; no time-of-day-dependent changes occur in OVX mice.

View Article and Find Full Text PDF

We introduce a novel protocol to stain, visualize, and analyze blood vessels from the rat and mouse cerebrum. This technique utilizes the fluorescent dye, DiI, to label the lumen of the vasculature followed by perfusion fixation. Following brain extraction, the labeled vasculature is then imaged using wide-field fluorescence microscopy for axial and coronal images and can be followed by regional confocal microscopy.

View Article and Find Full Text PDF

Gonadotropin-releasing hormone (GnRH) neurons produce the central output controlling fertility and are regulated by steroid feedback. A switch from estradiol negative to positive feedback initiates the GnRH surge, ultimately triggering ovulation. This occurs on a daily basis in ovariectomized, estradiol-treated (OVX+E) mice; GnRH neurons are suppressed in the morning and activated in the afternoon.

View Article and Find Full Text PDF

Pulsatile release of gonadotropin-releasing hormone (GnRH) is key to fertility. Pulse frequency is modulated by gonadal steroids and likely arises subsequent to coordination of GnRH neuron firing activity. The source of rhythm generation and the site of steroid feedback remain critical unanswered questions.

View Article and Find Full Text PDF

The role of the cerebrovascular network and its acute response to TBI is poorly defined and emerging evidence suggests that cerebrovascular reactivity is altered. We explored how cortical vessels are physically altered following TBI using a newly developed technique, vessel painting. We tested our hypothesis that a focal moderate TBI results in global decrements to structural aspects of the vasculature.

View Article and Find Full Text PDF

During the female reproductive cycle, estradiol exerts negative and positive feedback at both the central level to alter gonadotropin-releasing hormone (GnRH) release and at the pituitary to affect response to GnRH. Many studies of the neurobiologic mechanisms underlying estradiol feedback have been done on ovariectomized, estradiol-replaced (OVX+E) mice. In this model, GnRH neuron activity depends on estradiol and time of day, increasing in estradiol-treated mice in the late afternoon, coincident with a daily luteinizing hormone (LH) surge.

View Article and Find Full Text PDF

The preovulatory secretory surge of gonadotropin-releasing hormone (GnRH) is crucial for fertility and is regulated by a switch of estradiol feedback action from negative to positive. GnRH neurons likely receive estradiol feedback signals via ERα-expressing afferents. Kisspeptin neurons in anteroventral periventricular nucleus (AVPV) are thought to be critical for estradiol-positive feedback induction of the GnRH surge.

View Article and Find Full Text PDF

Gonadotropin-releasing hormone (GnRH) secretion is regulated by estradiol feedback. This feedback switches from negative to positive in females; this switch depends on time of day in many species. Estradiol feedback is likely conveyed via afferents.

View Article and Find Full Text PDF

Brain trimming through defined neuroanatomical landmarks is recommended to obtain consistent sections in rat toxicity studies. In this article, we describe a matrix-guided trimming protocol that uses channels to reproduce coronal levels of anatomical landmarks. Both setup phase and validation study were performed on Han Wistar male rats (Crl:WI(Han)), 10-week-old, with bodyweight of 298 ± 29 (SD) g, using a matrix (ASI-Instruments(®), Houston, TX) fitted for brains of rats with 200 to 400 g bodyweight.

View Article and Find Full Text PDF

Vessel painting is a simple, cost-effective way to visualize the vascular architecture of the mouse brain and other organs. DiI is a lipophilic carbocyanine dye that binds to lipid membranes and is commonly used for tract tracing in the brain. After perfusion with PBS to remove the blood, perfusion with a special DiI solution allows direct staining of the vasculature.

View Article and Find Full Text PDF

The analysis of volatile organic compounds (VOC) as biomarkers of cancer is both promising and challenging. In this pilot study, we used an untargeted approach to compare volatile metabolomic signatures of melanoma and matched control non-neoplastic skin from the same patient. VOC from fresh (non-fixed) biopsied tissue were collected using the headspace solid phase micro extraction method (HS SPME) and analyzed by gas chromatography and mass spectrometry (GCMS).

View Article and Find Full Text PDF

Episodic memory, especially memory for contextual or spatial information, is particularly vulnerable to age-related decline in humans and animal models of aging. The continuing improvement of virtual environment technology for testing humans signifies that widely used procedures employed in the animal literature for examining spatial memory could be developed for examining age-related cognitive decline in humans. The current review examines cross species considerations for implementing these tasks and translating findings across different levels of analysis.

View Article and Find Full Text PDF

The gradual decline of cognitive ability with age, even in the absence of overt brain disease, is a growing problem. Although cognitive aging is a common and feared accompaniment of the aging process, its underlying mechanisms are not well understood and there are no highly effective means to prevent it. Additional research on cognitive aging is sorely needed, and methods that enable ready translation between human subjects and animal models stand to provide the most benefit.

View Article and Find Full Text PDF

Laser speckle contrast (LSC) was used to compare the extent of cortical ischemia in two inbred mouse strains that differed in their degree of collateral circulation, after laser occlusion of the distal middle cerebral artery, and after treatment with 25% albumin (ALB) or saline (control). Sequential LSC images acquired over ∼90 minutes were coaligned, converted to relative flow, and normalized to baseline. After 3-day survival, infarction was quantified by triphenyl tetrazolium chloride or magnetic resonance imaging.

View Article and Find Full Text PDF

Nicotine, the addictive agent in cigarettes, reduces circulating estradiol-17β (E₂) and inhibits E₂-mediated intracellular signaling in hippocampus of female rats. In hippocampus, E₂-signaling regulates synaptic plasticity by phosphorylation of the N-methyl-D-aspartic acid receptor subunit NR2B and cyclic-AMP response element binding protein (pCREB). Therefore, we hypothesized that chronic nicotine exposure induces synaptic dysfunction in hippocampus of female rats.

View Article and Find Full Text PDF

Cerebral ischemia causes cerebral blood flow (CBF) derangements resulting in neuronal damage by enhanced protein kinase C delta (δPKC) levels leading to hippocampal and cortical neuronal death after ischemia. Contrarily, activation of εPKC mediates ischemic tolerance by decreasing vascular tone providing neuroprotection. However, whether part of this protection is due to the role of differential isozymes of PKCs on CBF following cerebral ischemia remains poorly understood.

View Article and Find Full Text PDF