Biol Rev Camb Philos Soc
November 2024
An ecosystem shifts to an alternative stable state when a threshold of accumulated pressure (i.e. direct impact of environmental change or human activities) is exceeded.
View Article and Find Full Text PDFHuman activities have led to degradation of ecosystems globally. The lost ecosystem functions and services accumulate from the time of disturbance to the full recovery of the ecosystem and can be quantified as a "recovery debt," providing a valuable tool to develop better restoration practices that accelerate recovery and limit losses. Here, we quantified the recovery of faunal biodiversity and abundance toward a predisturbed state following structural restoration of oyster habitats globally.
View Article and Find Full Text PDFMacroalgal forests provide productivity and biomass that underpins the function of many coastal ecosystems globally. The phenology of forests is seasonally driven by environmental conditions, with the environment-productivity relationship understood for most coastlines of the world. Climatic transition zones, however, have characteristics of temperate and tropical regions, creating large fluctuations in environmental conditions, and potentially limiting productivity and the persistence of macroalgal forests.
View Article and Find Full Text PDFWith rising ocean temperatures, extreme weather events such as marine heatwaves (MHWs) are increasing in frequency and duration, pushing marine life beyond their physiological limits. The potential to respond to extreme conditions through physiological acclimatization, and pass on resistance to the next generation, fundamentally depends on the capacity of an organism to cope within their thermal tolerance limits. To elucidate whether heat conditioning of parents could benefit offspring development, we exposed adult sea urchins (Heliocidaris erythrogramma) to ambient summer (23°C), moderate (25°C) or strong (26°C) MHW conditions for 10 days.
View Article and Find Full Text PDFHeatwaves are increasing in frequency and intensity, with substantial impacts on ecosystems and species which maintain their function. Whether or not species are harmed by heatwave conditions by being pushed beyond their physiological bounds can depend on whether energy replacement is sufficient to enable recovery from acute stress. We exposed an ecologically important sea urchin, Heliocidaris erythrogramma, to experimental marine heatwave scenarios in context with recent summer heat anomalies in moderate (25 °C), and strong heatwave (26 °C) conditions for 10 days, followed by a 10-day recovery period at normal summer temperature (23 °C).
View Article and Find Full Text PDFMarine heatwaves (MHWs) are an emerging threat to marine organisms that have increased in frequency and magnitude in the past decade. These extreme heating events can have differential impacts on organisms with some experiencing mortality while others survive. Here, we experimentally exposed two species of subtidal gastropod (Trochus sacellum and Astralium haematragum) to two realistic intensities of MHW to test the ability of different species to physiologically cope with extreme heating events.
View Article and Find Full Text PDFAnthropogenic modification of aquatic systems has diverse impacts on food web interactions and ecosystem states. To reverse the adverse effects of modified freshwater flow, adequate management of discharge is required, especially due to higher water requirements and abstractions for human use. Here, we look at the effects of anthropogenically controlled freshwater flow regimes on the planktonic food web of a Ramsar listed coastal lagoon that is under recovery from degradation.
View Article and Find Full Text PDF