Publications by authors named "Deeti K Shetty"

Thoracic aortic disease (TAD) is often silent until a life-threatening complication occurs. However, genetic information can inform both identification and treatment at an early stage. Indeed, a diagnosis is important for personalised surveillance and intervention plans, as well as cascade screening of family members.

View Article and Find Full Text PDF

Thoracic aortic diseases, whether sporadic or due to a genetic disorder such as Marfan syndrome, lack effective medical therapies, with limited translation of treatments that are highly successful in mouse models into the clinic. Patient-derived induced pluripotent stem cells (iPSCs) offer the opportunity to establish new human models of aortic diseases. Here we review the power and potential of these systems to identify cellular and molecular mechanisms underlying disease and discuss recent advances, such as gene editing, and smooth muscle cell embryonic lineage.

View Article and Find Full Text PDF

Pluripotent stem cells (PSCs) derive energy predominantly from glycolysis and not the energy-efficient oxidative phosphorylation (OXPHOS). Differentiation is initiated with energy metabolic shift from glycolysis to OXPHOS. We investigated the role of mitochondrial energy metabolism in human PSCs using molecular, biochemical, genetic, and pharmacological approaches.

View Article and Find Full Text PDF

Asrij is an endocytic protein expressed in mouse embryonic stem cells (mESCs) and is essential for maintenance of stemness of mESCs (Mukhopadhyay et al., 2003; Sinha et al., 2013).

View Article and Find Full Text PDF

Ovarian carcinoma immuno-reactive antigen domain containing 1 (OCIAD1) single copy was knocked out generating an OCIAD1 heterozygous knockout human embryonic stem line named BJNhem20-OCIAD1-CRISPR-39. The line was generated using CRISPR-Cas9D10A double nickase knockout strategy (Mali et al., 2013).

View Article and Find Full Text PDF

Human embryonic stem cell line BJNhem20-pCAG-tdTomato was generated using non-viral method. The construct pCAG-tdTomato was transfected using microporation procedure. This fluorescent hESC line can help to study heterogeneity within individual cells in hESC colonies by enabling live tracking of their growth, migration and differentiation properties.

View Article and Find Full Text PDF

Human embryonic stem cell line BJNhem20-OCIAD1-Tet-On was generated using non-viral method. The constructs pCAG-Tet-On and pTRE-Tight vector driving OCIAD1 expression were transfected using microporation procedure. pCAG-Tet-On cells can be used for inducible expression of any coding sequence cloned into pTRE-Tight vector.

View Article and Find Full Text PDF

Ovarian carcinoma immuno-reactive antigen domain containing 1(OCIAD1) single copy was knocked out generating an OCIAD1 heterozygous knockout human embryonic stem line named BJNhem20-OCIAD1-CRISPR-20. The line was generated using CRISPR-Cas9D10A double nickase knockout strategy (Mali et al., 2013).

View Article and Find Full Text PDF

Ovarian Carcinoma Immuno-reactive Antigen domain containing protein 1 (OCIAD1) was overexpressed in BJNhem20 human embryonic stem cell line (hESC) using plasmid transfection, followed by stable cell line generation. The construct pCAG-OCIAD1 was introduced into hESCs by microporation.

View Article and Find Full Text PDF