As an obligate intracellular pathogen, the apicomplexan parasite Toxoplasma gondii evades immune system-mediated clearance by undergoing stage differentiation to persist indefinitely in susceptible hosts. Previously, we found that mice deficient in the ectoenzyme CD73, which generates adenosine in the extracellular matrix, were resistant to chronic toxoplasmosis after oral infection with T. gondii.
View Article and Find Full Text PDFCD73 is a glycosyl-phosphatidylinositol-(GPI-) linked membrane protein that catalyzes the extracellular dephosphorylation of adenosine monophosphate (AMP) to adenosine. Adenosine is a negative regulator of inflammation and prevents excessive cellular damage. We investigated the role of extracellular adenosine in the intestinal mucosa during the development of Dextran-Sulfate-Sodium-(DSS-)salt-induced colitis in mice that lack CD73 (CD73(-/-)) and are unable to synthesize extracellular adenosine.
View Article and Find Full Text PDFToxoplasma gondii is an obligate intracellular protozoan pathogen that traffics to the central nervous system (CNS) following invasion of its host. In the CNS, T. gondii undergoes transformation from a rapidly dividing tachyzoite to a long-lived, slow-dividing bradyzoite contained within cysts.
View Article and Find Full Text PDFBackground: Multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE) are debilitating neuroinflammatory diseases mediated by lymphocyte entry into the central nervous system (CNS). While it is not known what triggers lymphocyte entry into the CNS during neuroinflammation, blockade of lymphocyte migration has been shown to be effective in controlling neuroinflammatory diseases. Since we have previously shown that extracellular adenosine is a key mediator of lymphocyte migration into the CNS during EAE progression, we wanted to determine which factors are regulated by adenosine to modulate EAE development.
View Article and Find Full Text PDFDiabetic patients experience a higher risk for severe periodontitis; however, the underlying mechanism remains unclear. We investigated the contribution of antibacterial T-cell-mediated immunity to enhanced alveolar bone loss during periodontal infection in nonobese diabetic (NOD) mice by oral inoculation with Actinobacillus actinomycetemcomitans, a G(-) anaerobe responsible for juvenile and severe periodontitis. The results show that 1) inoculation with A.
View Article and Find Full Text PDF