Cell-cycle phase is a critical determinant of the choice between DNA damage repair by nonhomologous end-joining (NHEJ) or homologous recombination (HR). Here, we report that double-strand breaks (DSBs) induce ATM-dependent MOF (a histone H4 acetyl-transferase) phosphorylation (p-T392-MOF) and that phosphorylated MOF colocalizes with γ-H2AX, ATM, and 53BP1 foci. Mutation of the phosphorylation site (MOF-T392A) impedes DNA repair in S and G2 phase but not G1 phase cells.
View Article and Find Full Text PDFThe p53-binding protein 1 (53BP1) is a well-known DNA damage response (DDR) factor, which is recruited to nuclear structures at the site of DNA damage and forms readily visualized ionizing radiation (IR) induced foci. Depletion of 53BP1 results in cell cycle arrest in G2/M phase as well as genomic instability in human as well as mouse cells. Within the DNA damage response mechanism, 53BP1 is classified as an adaptor/mediator, required for processing of the DNA damage response signal and as a platform for recruitment of other repair factors.
View Article and Find Full Text PDFNuclear factor-kappaB (NF-kappaB) activation may play an important role in the pathogenesis of cancer and also in resistance to treatment. Inactivation of the p53 tumor suppressor is a key component of the multistep evolution of most cancers. Links between the NF-kappaB and p53 pathways are under intense investigation.
View Article and Find Full Text PDFElucidating the cross-talk between inflammatory and cell proliferation pathways might provide important insights into the pathogenesis of inflammation-induced cancer. Here, we show that the receptor-interacting protein 1 (RIP1)-an essential mediator of inflammation-induced nuclear factor-kappaB (NF-kappaB) activation-regulates p27(Kip1) levels and cell-cycle progression. RIP1 regulates p27(Kip1) levels by an NF-kappaB-independent signal that involves activation of the phosphatidylinositol 3-kinase (PI3K)-Akt-forkhead pathway.
View Article and Find Full Text PDFOf the nine known members of the CCR4-NOT complex, CCR4/CAF1 are most important in mRNA deadenylation whereas the NOT1-5 proteins are most critical for transcriptional repression. Whole genome microarray analysis using deletions in seven of the CCR4-NOT genes was used to determine the overall mRNA expression patterns that are affected by members of the yeast CCR4-NOT complex. Under glucose conditions, ccr4 and caf1 displayed a high degree of similarity in the manner that they affected gene expression.
View Article and Find Full Text PDFThe epidermal growth factor receptor (EGFR) gene is commonly amplified and rearranged in glioblastoma multiforme leading to overexpression of wild-type and mutant EGFRs. Expression of wild-type EGFR ligands, such as transforming growth factor-alpha (TGF-alpha) or heparin-binding EGF (HB-EGF), is also often increased in gliomas resulting in an autocrine loop that contributes to the growth autonomy of glioma cells. Glioblastoma multiformes express a characteristic EGFR mutant (EGFRvIII, de 2-7) that does not bind ligand, signals constitutively, and is more tumorigenic than the wild-type receptor.
View Article and Find Full Text PDF