For over a century, early researchers sought to study biological organisms in a laboratory setting, leading to the generation of both in vitro and in vivo model systems. Patient-derived models of cancer (PDMCs) have more recently come to the forefront of preclinical cancer models and are even finding their way into clinical practice as part of functional precision medicine programs. The PDMC Consortium, supported by the Division of Cancer Biology in the National Cancer Institute of the National Institutes of Health, seeks to understand the biological principles that govern the various PDMC behaviors, particularly in response to perturbagens, such as cancer therapeutics.
View Article and Find Full Text PDFBackground: Infections with SARS-CoV-2 have a pronounced impact on the gastrointestinal tract and its resident microbiome. Clear differences between severe cases of infection and healthy individuals have been reported, including the loss of commensal taxa. We aimed to understand if microbiome alterations including functional shifts are unique to severe cases or a common effect of COVID-19.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
July 2022
Mycobacterium tuberculosis is an etiological agent of tuberculosis (TB) known to be a highly contagious disease and is the major cause of mortality from a single infectious agent worldwide. Emergence of multi-drug resistant and extremely drug resistant strains of M. tuberculosis has made TB management extremely challenging eliciting the urgent need for alternative therapeutics.
View Article and Find Full Text PDFEur J Pharm Sci
March 2018
Cell-penetrating peptides (CPPs) and antimicrobial peptides (AMPs) share certain physicochemical parameters such as amphipathicity, hydrophobicity, cationicity and pI, due to which these two groups of peptides also exhibit overlapping functional characteristics. In our current work, we have evaluated antimicrobial properties of cell-penetrating peptides derived from Latarcin1. Latarcin derived peptide (LDP) exhibited antimicrobial activity against representative microorganisms tested and bactericidal effect against methicillin resistant Staphylococcus aureus (MRSA), which was used as model organism of study in the present work.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
February 2018
Cell-penetrating peptides and antimicrobial peptides share physicochemical characteristics and mechanisms of interaction with biological membranes, hence, termed as membrane active peptides. The present study aims at evaluating AMP activity of CPPs. LDP-NLS and LDP are Latarcin 1 derived cell-penetrating peptides and in the current study we have evaluated antifungal and cell-penetrating properties of these CPPs in Fusarium solani.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
February 2017
CyLoP-1 is a cysteine-rich cell-penetrating peptide derived from nuclear localization sequence of snake toxin, crotamine. The peptide has shown cytoplasmic uptake in mammalian cells at lower concentrations. In the present study, the cell-penetrating and antimicrobial activity of the peptide has been studied by employing mammalian cells, plant cells as well as bacterial and fungal pathogens.
View Article and Find Full Text PDFMarine organisms are known to be a rich and unique source of bioactive compounds as they are exposed to extreme conditions in the oceans. The present study is an attempt to briefly describe some of the important membrane-active peptides (MAPs) such as antimicrobial peptides (AMPs), cell-penetrating peptides (CPPs) and peptide toxins from marine organisms. Since both AMPs and CPPs play a role in membrane perturbation and exhibit interchangeable role, they can speculatively fall under the broad umbrella of MAPs.
View Article and Find Full Text PDF