Publications by authors named "Deepshikha Shahdeo"

Coronavirus disease (COVID-19) is an infectious disease that has posed a global health challenge caused by the SARS-CoV-2 virus. Early management and diagnosis of SARS-CoV-2 are crucial for the timely treatment, traceability, and reduction of viral spread. We have developed a rapid method using a Graphene-based Field-Effect Transistor (Gr-FET) for the ultrasensitive detection of SARS-CoV-2 Spike S1 antigen (S1-Ag).

View Article and Find Full Text PDF

Coronavirus Disease 2019 (COVID-19) pandemic has shown the need for early diagnosis to manage infectious disease outbreaks. Here, we report a label free electrochemical Fluorine-Doped Tin Oxide (FTO) Immunosensor coupled with gold nanorods (GNRs) as an electron carrier for ultrasensitive detection of the Receptor Binding Domain (RBD) of SARS CoV-2 Spike protein. The RBD gene was cloned, and expressed in-house with confirmed molecular weight of ∼31 kDa via Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF).

View Article and Find Full Text PDF

Ochratoxin A (OTA) is one of the predominant mycotoxins that contaminate a wide range of food commodities. In the present study, a 36-mer aptamer was used as a molecular recognition element coupled with gold nanoparticles (AuNPs) for colorimetric detection of OTA in a microfluidic paper-based analytical device (μPADs). The μPADs consisted of three zones: control, detection, and sample, interconnected by channels.

View Article and Find Full Text PDF

Compared with other nanomaterials, surface-modified iron oxide nanoparticles (IONPs) have gained attraction for cancer therapy applications due to its low toxicity, and long retention time. An innocuous targeting strategy was developed by generation of fluorescein isothiocyanate (FITC)-labeled peptide (growth factor domain (GFD) and somatomedin B domain (SMB)) functionalized, chitosan-coated IONPs (IONPs/C). It can be used to target urokinase plasminogen activator receptor (uPAR), which is a surface biomarker, in ovarian cancer.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19), which started out as an outbreak of pneumonia, has now turned into a pandemic due to its rapid transmission. Besides developing a vaccine, rapid, accurate, and cost-effective diagnosis is essential for monitoring and combating the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its related variants on time with precision and accuracy. Currently, the gold standard for detection of SARS-CoV-2 is Reverse Transcription Polymerase Chain Reaction (RT-PCR), but it lacks accuracy, is time-consuming and cumbersome, and fails to detect multi-variant forms of the virus.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, also known as 2019-nCov or COVID-19) outbreak has become a huge public health issue due to its rapid transmission making it a global pandemic. Here, we report fabricated fluorine doped tin oxide (FTO) electrodes/gold nanoparticles (AuNPs) complex coupled with in-house developed SARS-CoV-2 spike S1 antibody (SARS-CoV-2 Ab) to measure the response with Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV). The biophysical characterisation of FTO/AuNPs/SARS-CoV-2Ab was done via UV-Visible spectroscopy, Dynamic Light Scattering (DLS), and Fourier Transform Infrared Spectroscopy (FT-IR).

View Article and Find Full Text PDF

Targeting peptides are a promising tool for early diagnosis and therapy of cancer. Overexpression of urokinase plasminogen activator receptor (uPAR) leads to the progression of tumors including prostate, colorectal, ovarian, and breast cancers. To improve the diagnosis and imaging efficiency, herein we report a stable nanocomplex comprising methoxy-PEG-hydrazide (mPEG-H-M)-modified gold nanoparticles (AuNPs) conjugated to uPAR (urokinase plasminogen activator receptor)-targeting peptides GFD (growth factor domain-G) and SMB (somatomedian B-S) for efficient imaging of uPAR-overexpressing cancer cells.

View Article and Find Full Text PDF
Article Synopsis
  • * The binding of urokinase plasminogen activator's (uPA) growth factor domain (GFD) to uPAR allows further interaction with vitronectin through allosteric modulation, enhancing targeting techniques.
  • * Researchers developed fluorescently labeled gold nanoparticles (AuNPs) combined with chitosan and specialized peptides for effective targeting of uPAR-positive cells, achieving better results in uptake and imaging compared to less optimized combinations.
View Article and Find Full Text PDF

Contamination of milk by mycotoxins is a serious problem worldwide. Herein, we focused on the detection of aflatoxin B1 (AflB1) using a paper microfluidic device fabricated with specific aptamers as biorecognition elements. The fabrication process resulted in the generation of a leak proof microfluidic device where two zones were designed: control and test.

View Article and Find Full Text PDF

This study describes the colorimetric detection of aflatoxin M1 (Afl M1) in milk samples using a microfluidic paper-based analytical device (µPAD). Fabrication of µPADs was done using a simple and quick approach. Each μPAD contained a detection zone and a sample zone interconnected by microchannels.

View Article and Find Full Text PDF