Publications by authors named "Deepkamal Karelia"

Our previous work has shown a synergistic tumoricidal efficacy of combining the hexokinase (HK) inhibitor 2-deoxyglucose (2-DG) and the autophagy inhibitor chloroquine (CQ) through intraperitoneal injections on HK2-addicted prostate cancers in animal models. The pharmacokinetic (PK) behaviors of these oral drugs after simultaneous oral administration have not been reported. We developed high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) analytical methods for 2-DG and the clinically favored drug hydroxychloroquine (HCQ) for sera samples.

View Article and Find Full Text PDF

Our previous work has shown a synergistic tumoricidal action of the hexokinase (HK) inhibitor 2-deoxyglucose (2-DG) and the autophagy inhibitor chloroquine (CQ) on HK2-addicted prostate cancers in animal models through intraperitoneal injections. Here we developed high performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) methods for 2-DG and clinically favored drug hydroxychloroquine (HCQ) and explored PK interaction of the orally administered drugs in a jugular vein cannulated male rat model, which allowed serial blood collection before and 0.5, 1, 2, 4 and 8 h after a single gavage dose of each drug alone or simultaneously after appropriate washout periods between the drugs.

View Article and Find Full Text PDF

Studies have reported that cannabinoids, in particular Δ-tetrahydrocannabinol (Δ-THC) and cannabidiol (CBD), significantly reduce cancer cell viability . Unfortunately, treatment conditions vary significantly across reports. In particular, a majority of reports utilize conditions with reduced serum concentrations (0-3%) that may compromise the growth of the cells themselves, as well as the observed results.

View Article and Find Full Text PDF

Our previous screening efforts with colorectal cancer cell lines suggested potential cannabinoid therapeutic leads for other solid cancers. The aim of this study was to identify cannabinoid lead compounds that have cytostatic and cytocidal activities against prostate and pancreatic cancer cell lines and profile cellular responses and molecular pathways of select leads. A library of 369 synthetic cannabinoids was screened against 4 prostate and 2 pancreatic cancer cell lines with 48 h of exposure at 10 μM in medium with 10% fetal bovine serum using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) viability assay.

View Article and Find Full Text PDF

Korean scientists have shown that oral administration of Nakai (AGN) root alcoholic extract and the metabolite of its pyranocoumarins, decursinol, have antinociceptive properties across various thermal and acute inflammatory pain models. The objectives of this study were 1) to assess whether tolerance develops to the antinociceptive effects of once-daily intraperitoneally administered decursinol (50 mg/kg) in acute thermal pain models, 2) to establish its anti-allodynic efficacy and potential tolerance development in a model of chemotherapy-evoked neuropathic pain (CENP) and 3) to probe the involvement of select receptors in mediating the pain-relieving effects with antagonists. The results show that decursinol induced antinociception in both the hot plate and tail-flick assays and reversed mechanical allodynia in mice with cisplatin-evoked neuropathic pain.

View Article and Find Full Text PDF

Background: The novel selenium-aspirin compound AS-10 was recently reported by us with a cancer cell killing potency three orders of magnitude greater than aspirin in pancreatic cancer cell lines with caspase-mediated apoptosis and a reasonable selectivity against malignant cells. Although we also observed its cytocidal activity against PC-3 and DU145 androgen receptor (AR)-negative and P53-null/mutant aggressive human prostate cancer (PCa) cell lines in NCI-60 screen, the potential involvement and targeting of AR and P53 pathways that are intact in early-stage prostate carcinogenesis has not been examined, nor its primary molecular signaling after exposure.

Methods: Human LNCaP PCa cells with functional AR and intact P53 were used to examine their cell cycle and cell fate responses to AS-10 exposure and upstream molecular signaling events including histone acetylation as a known aspirin effect.

View Article and Find Full Text PDF

Current available therapies for pancreatic ductal adenocarcinoma (PDAC) provide minimal overall survival benefits and cause severe adverse effects. We have identified a novel molecule AS-10, a selenazolidine-bis-aspirinyl derivative, that was two to three orders of magnitude more potent than aspirin and at least one to two orders of magnitude more potent than gemcitabine in inhibiting PDAC cancer cell growth/viability against three PDAC cell lines while sparing mouse embryonic fibroblasts in the same exposure range. In Panc-1 cells, AS-10 induced apoptosis without necrosis, principally through caspase-3/7 cascade and reactive oxygen species, in addition to an induction of G cell cycle block.

View Article and Find Full Text PDF

Background: Noninvasive live-animal longitudinal monitoring of xenograft tumor growth and metastasis by bioluminescent imaging (BLI) has been widely reported in cancer biology and preclinical therapy literature, mainly in athymic nude mice. Our own experience at calibrating BLI readout with tumor weight/volume in human prostate cancer xenograft models in haired, SCID-NSG mice through intraprostatic (orthotopic) and subcutaneous (SC) inoculations revealed either nonexistent or poor correlation (coefficient of determination, R  = ~0.01-0.

View Article and Find Full Text PDF

The prognosis for patients with metastatic melanoma remains very poor. Constitutive signal transducer and activator of transcription 3 (STAT3) activation has been correlated to metastasis, poor patient survival, larger tumor size, and acquired resistance against vemurafenib (PLX-4032), suggesting its potential as a molecular target. We recently designed a series of isoseleno- and isothio-urea derivatives of several biologically active heterocyclic scaffolds.

View Article and Find Full Text PDF

Previous studies have established the in vivo bioavailability and efficacious dosages of phenylbutyl isoselenocyanate (ISC-4), a selenium-substituted isothiocyanate, against mouse xenograft models of human melanoma and colorectal cancer. To explore its potential attributes against prostate cancer, we treated human LNCaP prostate cancer cells with ISC-4 and examined their apoptosis responses, and interrogated the signaling mechanisms through pharmacological and siRNA knockdown approaches. Our results show that ISC-4 was more potent at inducing apoptosis than its sulfur analog phenylbutyl isothiocyanate (PBITC) without suppressing protein kinase AKT Ser phosphorylation.

View Article and Find Full Text PDF

Bone loss or osteoporosis, is a slow-progressing disease that results from dysregulation of pro-inflammatory cytokines. The FDA has approved number of drugs for bone loss prevention, nonetheless all are expensive and have multiple side effects. The nutraceuticals identified from dietary agents such as butein, cardamonin, coronarin D curcumin, diosgenin, embelin, gambogic acid, genistein, plumbagin, quercetin, reseveratrol, zerumbone and more, can modulate cell signaling pathways and reverse/slow down osteoporosis.

View Article and Find Full Text PDF

A series of novel thio- and seleno-barbituric acid derivatives were synthesized by varying the substituents at N1 and N3 (ethyl, methyl, allyl, and phenyl), and C5 tethered with dienyl and trienyl moieties attached to substituents such as phenyl, 2-furanyl, 2-thiophenyl, 1-naphthyl, and 3-pyridyl. The cytotoxic potential of these derivatives was evaluated by using MTT assay against melanoma cell lines expressing either wild-type (CHL-1) or mutant (UACC 903) BRAF gene. Among all, 2b and 8b were identified as the most potent compounds.

View Article and Find Full Text PDF

Synthesis and anti-melanoma activity of novel naphthalimide isoselenocyanate (NISC) and naphthalimide selenourea (NSU) analogs are described. The novel agents were screened for growth inhibition of different human melanoma cell lines including those having BRAF mutation (UACC903, 1205Lu, and A375M) and BRAF (CHL-1). In general, the NISC analogs (4a-d) were more effective in inhibiting the cell viability than the NSU analogs (7a-b).

View Article and Find Full Text PDF

Kokum, a spice derived from the fruit of the Garcinia hanburyi tree, is traditionally used in Ayurvedic medicines to facilitate digestion and to treat sores, dermatitis, diarrhoea, dysentery, and ear infection. One of the major active components of kokum is gambogic acid, also known as guttic acid, guttatic acid, beta-guttilactone, and beta-guttiferin. Gambogic acid's anti-proliferative, anti-bacterial; antioxidant and anti-inflammatory effects result from its modulation of numerous cell-signaling intermediates.

View Article and Find Full Text PDF

Escaping from cell death is one of the adaptations that enable cancer cells to stave off anticancer therapies. The key players in avoiding apoptosis are collectively known as survival proteins. Survival proteins comprise the Bcl-2, inhibitor of apoptosis (IAP), and heat shock protein (HSP) families.

View Article and Find Full Text PDF

A series of novel selenourea derivatives and corresponding thiourea analogs were synthesized and tested against a panel of six human cancer cell lines: melanoma (1205Lu), lung carcinoma (A549), prostatic carcinoma (DU145), colorectal carcinoma (HCT116), pancreatic epithelioid carcinoma (PANC-1) and pancreatic adenocarcinoma (BxPC3). In general, we found that the selenium-containing derivatives were more potent than their isosteric sulfur analogs. Four selenourea derivatives (1e, 1f, 1g and 1i) showed IC50 values below 10 μM in all of tested cell lines at 72 h.

View Article and Find Full Text PDF

The synthesis and anticancer evaluation of novel selenium-nonsteroidal anti-inflammatory drug (Se-NSAID) hybrid molecules are reported. The Se-aspirin analogue 8 was identified as the most effective agent in reducing the viability of different cancer cell lines, particularly colorectal cancer (CRC) cells, was more selective toward cancer cells than normal cells, and was >10 times more potent than 5-FU, the current therapy for CRC. Compound 8 inhibits CRC growth via the inhibition of the cell cycle in G1 and G2/M phases and reduces the cell cycle markers like cyclin E1 and B1 in a dose dependent manner; the inhibition of the cell cycle may be dependent on the ability of 8 to induce p21 expression.

View Article and Find Full Text PDF

In continuation of our efforts to find new biologically active agents, regioselective synthesis of a series of 2-(3,5-dimethyl-1H-pyrazol-1-yl)-1-arylethanones 4a-k has been achieved under facile, extremely mild and greener reaction conditions with excellent yields. Moreover, one pot multicomponent reaction has also been reinvestigated under previously reported solvent conditions to prepare 4a-b and found that the reaction generates significant amount of side products. The chemical structures of 4a-k were established on the basis of a combined use of IR, NMR ((1)H, (13)C) spectroscopy, mass spectrometry and elemental analysis.

View Article and Find Full Text PDF