Sensitive developmental periods shape neural circuits and enable adaptation. However, they also engender vulnerability to factors that can perturb developmental trajectories. An understanding of sensitive period phenomena and mechanisms separate from sensory system development is still lacking, yet critical to understanding disease etiology and risk.
View Article and Find Full Text PDFSerotonin (5-HT) selective reuptake inhibitors (SSRIs) are widely used in the treatment of depression and anxiety disorders, but responsiveness is uncertain and side effects often lead to discontinuation. Side effect profiles suggest that SSRIs reduce dopaminergic (DAergic) activity, but specific mechanistic insight is missing. Here we show in mice that SSRIs impair motor function by acting on 5-HT2C receptors in the substantia nigra pars reticulata (SNr), which in turn inhibits nigra pars compacta (SNc) DAergic neurons.
View Article and Find Full Text PDFThe efficacy and duration of memory storage is regulated by neuromodulatory transmitter actions. While the modulatory transmitter serotonin (5-HT) plays an important role in implicit forms of memory in the invertebrate Aplysia, its function in explicit memory mediated by the mammalian hippocampus is less clear. Specifically, the consequences elicited by the spatio-temporal gradient of endogenous 5-HT release are not known.
View Article and Find Full Text PDFDevelopment passes through sensitive periods, during which plasticity allows for genetic and environmental factors to exert indelible influence on the maturation of the organism. In the context of central nervous system (CNS) development, such sensitive periods shape the formation of neuro-circuits that mediate, regulate, and control behavior. This general mechanism allows for development to be guided by both the genetic blueprint, as well as the environmental context.
View Article and Find Full Text PDFEarly stress has been hypothesized to recruit epigenetic mechanisms to mediate persistent molecular, cellular, and behavioral changes. Here, we have examined the consequence of the early life stress of maternal separation (ES) on the gene expression of several histone modifiers that regulate histone acetylation and methylation within the medial prefrontal cortex (mPFC), a key limbic brain region that regulates stress responses and mood-related behavior. ES animals exhibit gene regulation of both writer (histone acetyltransferases and histone methyltransferases) and eraser (histone deacetylases and histone lysine demethylases) classes of histone modifiers.
View Article and Find Full Text PDFExposure to stressors elicits a spectrum of responses that span from potentially adaptive to maladaptive consequences at the structural, cellular and physiological level. These responses are particularly pronounced in the hippocampus where they also appear to influence hippocampal-dependent cognitive function and emotionality. The factors that influence the nature of stress-evoked consequences include the chronicity, severity, predictability and controllability of the stressors.
View Article and Find Full Text PDFDevelopment passes through sensitive periods, during which plasticity allows for genetic and environmental factors to exert indelible influence on the maturation of the organism. In the context of central nervous system development, such sensitive periods shape the formation of neurocircuits that mediate, regulate, and control behavior. This general mechanism allows for development to be guided by both the genetic blueprint as well as the environmental context.
View Article and Find Full Text PDFBackground: The experience of early stress contributes to the etiology of several psychiatric disorders and can lead to lasting deficits in working memory and attention. These executive functions require activation of the prefrontal cortex (PFC) by muscarinic M1 acetylcholine (ACh) receptors. Such Gαq-protein coupled receptors trigger the release of calcium (Ca(2+)) from internal stores and elicit prolonged neuronal excitation.
View Article and Find Full Text PDFInt J Neuropsychopharmacol
February 2014
The early stress of maternal separation (ES) exerts long-lasting effects on cognition and anxiety. Recent evidence indicates enhanced hippocampus-dependent spatial learning in young adult ES animals, which shifts towards a decline in long-term memory in middle-aged life. Further, we find that ES animals exhibit enhanced anxiety in young adulthood that does not persist into middle-aged life.
View Article and Find Full Text PDFBackground: Adult-onset stressors exert opposing effects on hippocampal neurogenesis and cognition, with enhancement observed following mild stress and dysfunction following severe chronic stress. While early life stress evokes persistent changes in anxiety, it is unknown whether early stress differentially regulates hippocampal neurogenesis, trophic factor expression, and cognition across the life span.
Methods: Hippocampal-dependent cognitive behavior, neurogenesis, and epigenetic regulation of brain-derived neurotrophic factor (Bdnf) expression was examined at distinct time points across the life span in rats subjected to the early stress of maternal separation (ES) and control groups.
Exposure to stress and hallucinogens in adulthood evokes persistent alterations in neurocircuitry and emotional behaviour. The structural and functional changes induced by stress and hallucinogen exposure are thought to involve transcriptional alterations in specific effector immediate early genes. The immediate early gene, activity regulated cytoskeletal-associated protein (Arc), is important for both activity and experience dependent plasticity.
View Article and Find Full Text PDF