Publications by authors named "Deepika Puri"

Pluripotent stem cells are characterized by their differentiation potential toward endoderm, mesoderm, and ectoderm. However, it is still largely unclear how these cell-fate decisions are mediated by epigenetic mechanisms. In this study, we explored the relevance of CCCTC-binding factor (CTCF), a zinc finger-containing DNA-binding protein, which mediates long-range chromatin organization, for directed cell-fate determination.

View Article and Find Full Text PDF

Background: Cell-type specific DNA methylation (DNAm) can be employed to determine the numbers of leukocyte subsets in blood. In contrast to conventional methods for leukocyte counts, which are based on cellular morphology or surface marker protein expression, the cellular deconvolution based on DNAm levels is applicable for frozen or dried blood. Here, we further enhanced targeted DNAm assays for leukocyte counts in clinical application.

View Article and Find Full Text PDF

Rejuvenation of cells by reprogramming toward the pluripotent state raises increasing attention. In fact, generation of induced pluripotent stem cells (iPSCs) completely reverses age-associated molecular features, including elongation of telomeres, resetting of epigenetic clocks and age-associated transcriptomic changes, and even evasion of replicative senescence. However, reprogramming into iPSCs also entails complete de-differentiation with loss of cellular identity, as well as the risk of teratoma formation in anti-ageing treatment paradigms.

View Article and Find Full Text PDF

Autophagy is a conserved cytoprotective process, aberrations in which lead to numerous degenerative disorders. While the cytoplasmic components of autophagy have been extensively studied, the epigenetic regulation of autophagy genes, especially in stem cells, is less understood. Deciphering the epigenetic regulation of autophagy genes becomes increasingly relevant given the therapeutic benefits of small-molecule epigenetic inhibitors in novel treatment modalities.

View Article and Find Full Text PDF

Repeat element transcription plays a vital role in early embryonic development. The expression of repeats such as MERVL characterises mouse embryos at the 2-cell stage and defines a 2-cell-like cell (2CLC) population in a mouse embryonic stem cell culture. Repeat element sequences contain binding sites for numerous transcription factors.

View Article and Find Full Text PDF

Autophagy is a vacuolar pathway for the regulated degradation and recycling of cellular components. Beclin1, a Bcl2-interacting protein, is a well-studied autophagy regulator. Homozygous loss of Beclin1 in mice leads to early embryonic lethality.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

The nuclear matrix (NuMat) serves as the structural framework for organizing and maintaining nuclear architecture, however, the mechanisms by which this non-chromatin compartment is constructed and regulated are poorly understood. This study presents a proteomic analysis of the NuMat isolated from cultured skeletal muscle cells in three distinct cellular states- proliferating myoblasts (MBs), terminally differentiated myotubes (MTs), and mitotically quiescent (G0) myoblasts. About 40% of the proteins identified were found to be common in the NuMat proteome of these morphologically and functionally distinct cell states.

View Article and Find Full Text PDF

Autophagy is a constitutive and cytoprotective catabolic process. Aberrations in autophagy lead to a multitude of degenerative disorders, with neurodegeneration being one of the most widely studied autophagy-related disorders. While the field has largely been focusing on the cytosolic constituents and processes of autophagy, recent studies are increasingly appreciating the role of chromatin modifications and epigenetic regulation in autophagy maintenance.

View Article and Find Full Text PDF

Quiescent stem cells contribute to tissue homeostasis and repair in adult mammals. We identified a tumor suppressor PRDM2, as an epigenetic regulator induced in quiescent muscle stem cells as well as in cultured quiescent myoblasts. To delineate the functions of PRDM2 in muscle cells, we compared the gene expression profiles of control and PRDM2 knockdown myoblasts in growing, differentiating and quiescent conditions (GEO accession number: GSE 58676).

View Article and Find Full Text PDF

Hox genes impart segment identity to body structures along the anterior-posterior axis and are crucial for proper development. A unique feature of the Hox loci is the collinearity between the gene position within the cluster and its spatial expression pattern along the body axis. However, the mechanisms that regulate collinear patterns of Hox gene expression remain unclear, especially in higher vertebrates.

View Article and Find Full Text PDF

Adult stem cell quiescence is critical to ensure regeneration while minimizing tumorigenesis. Epigenetic regulation contributes to cell cycle control and differentiation, but few regulators of the chromatin state in quiescent cells are known. Here we report that the tumor suppressor PRDM2/RIZ, an H3K9 methyltransferase, is enriched in quiescent muscle stem cells in vivo and controls reversible quiescence in cultured myoblasts.

View Article and Find Full Text PDF

Emerging evidence aided by genome-wide analysis of chromatin and transcriptional states has shed light on the mechanisms by which stem cells achieve cellular memory. The epigenetic and transcriptional plasticity governing stem cell behavior is highlighted by the identification of 'poised' genes, which permit cells to maintain readiness to undertake alternate developmental fates. This review focuses on two crucial mechanisms of gene poising: bivalent chromatin marks and RNA polymerase II stalling.

View Article and Find Full Text PDF

Background: Hox genes impart segment identity to body structures along the anterior-posterior axis and are crucial for the proper development of all organisms. Multiple regulatory elements, best defined in Drosophila melanogaster, ensure that Hox expression patterns follow the spatial and temporal colinearity reflected in their tight genomic organization. However, the precise mechanisms that regulate colinear patterns of Hox gene expression remain unclear, especially in higher vertebrates where it is not fully determined how the distinct activation domains of the tightly clustered Hox genes are defined independently of each other.

View Article and Find Full Text PDF

Epigenetic modifications play a crucial role in developmental gene regulation. These modifications, being reversible, provide a layer of information over and above the DNA sequence, that has plasticity and leads to the generation of cell type-specific epigenomes during cellular differentiation. In almost all higher eukaryotes, the oocyte provides not only its cytoplasm, mitochondria, maternally deposited RNA and proteins but also an epigenetic component in the form of DNA and histone-modifications.

View Article and Find Full Text PDF