Here, we demonstrate an integrated semibatch simultaneous CO capture and conversion to methanol process using a water-lean solvent, -(2-ethoxyethyl)-3-morpholinopropan-1-amine (2-EEMPA), that serves as both the capture solvent and subsequent condensed-phase medium for the catalytic hydrogenation of CO. CO is captured from simulated coal-derived flue gas at a target >90 mol % capture efficiency, with a continuous slipstream of CO-rich solvent delivered to a fixed bed catalytic reactor for catalytic hydrogenation. A single-pass conversion rate >60 C-mol % and selectivity >80 C-mol % are observed for methanol at relatively low temperatures (<200 °C) in the condensed phase of the carbon capture solvent.
View Article and Find Full Text PDFCarbon capture, utilization and storage is a key yet cost-intensive technology for the fight against climate change. Single-component water-lean solvents have emerged as promising materials for post-combustion CO capture, but little is known regarding their mechanism of action. Here we present a combined experimental and modelling study of single-component water-lean solvents, and we find that CO capture is accompanied by the self-assembly of reverse-micelle-like tetrameric clusters in solution.
View Article and Find Full Text PDFEfficient direct air capture (DAC) of CO will require strategies to deal with the relatively low concentration in the atmosphere. One such strategy is to employ the combination of a CO -selective membrane coupled with a CO capture solvent acting as a draw solution. Here, the interactions between a leading water-lean carbon-capture solvent, a polyether ether ketone (PEEK)-ionene membrane, CO , and combinations were probed using advanced NMR techniques coupled with advanced simulations.
View Article and Find Full Text PDFThe study reports on a simple system to fabricate skin substitutes consisting of a naturally occurring bacterial polysaccharide gellan gum. Gelation was driven by the addition of a culture medium whose cations induced gellan gum crosslinking at physiological temperature, resulting in hydrogels. Human dermal fibroblasts were incorporated in these hydrogels and their mechanical, morphological, and penetration characteristics were studied.
View Article and Find Full Text PDFThis work describes the synthetic approaches, spectroscopic and thermal characterization of aramid polymers prepared from waste polyethylene terephthalate (PET) via sustainable and scalable processes. Direct depolymerization of PET with aliphatic diamines under melt conditions resulted in decomposition without substantial formation of any aramid polymer. The Higashi-Ogata methodology or direct polycondensation of terephthalic acid (TPA) derived from PET waste and -phenylenediamine, resulted in oligomerization and formation of aramids with a low degree of polymerization.
View Article and Find Full Text PDFA combined experimental and theoretical study has been carried out on the wetting and reactivity of water-lean carbon capture solvents on the surface of common column packing materials. Paradoxically, these solvents are found to be equally able to wet hydrophobic and hydrophilic surfaces. The solvents are amphiphilic and can adapt to any interfacial environment, owing to their inherent heterogeneous (nonionic/ionic) molecular structure.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
October 2021
We report a custom-made technique to synthesize process-convenient skin scaffolds by tuning the mechanical properties of hydrogels based on a few naturally occurring polysaccharides to match the rheological properties of previously established benchmarks, i.e., the ex vivo native human skins.
View Article and Find Full Text PDFWater-lean CO capture solvents show promise for more efficient and cost-effective CO capture, although their long-term behavior in operation has yet to be well studied. New observations of extended structure solvent behavior show that some solvent formulations transform into a glass-like phase upon aging at operating temperatures after contact with CO. The glassification of a solvent would be detrimental to a carbon-capture process due to plugging of infrastructure, introducing a critical need to decipher the underlying principles of this phenomenon to prevent it from happening.
View Article and Find Full Text PDFCapturing carbon dioxide from post-combustion gas streams is an energy-intensive process that is required prior to either converting or sequestering CO . Although a few commercial 1st and 2nd generation aqueous amine technologies have been proposed, the cost of capturing CO with these technologies remains high. One approach to decrease costs of capture has been the development of water-lean solvents that aim to increase efficiency by reducing the water content in solution.
View Article and Find Full Text PDFThis work discusses the first set of rheometric measurements carried out on commercially accessible juvenile and aged skin models under large amplitude oscillatory shear deformations. The results were compared with those of native male whole human and dermis-only foreskin specimens, catering to a few ages from 0.5 to 68 years, including specimens from a 23-year-old male abdomen.
View Article and Find Full Text PDFThe study reports first ever account of measurements of linear viscoelastic moduli under small amplitude oscillatory shear deformations, for commercially available juvenile and aged in vitro 3D reconstructed skin models. The results were compared with those of native male whole human and dermis-only foreskin samples, catering to a wide age group from 0.5 to 68 years, including samples from a 23-year-old male abdomen.
View Article and Find Full Text PDFMass transfer coefficients of CO are anomalously high in water-lean solvents as compared to aqueous amines. Such phenomena are intrinsic to the molecular and nanoscale structure of concentrated organic CO capture solvents. To decipher the connections, we performed in situ liquid time-of-flight secondary ionization mass spectroscopy on a representative water-lean solvent, 1-((1,3-Dimethylimidazolidin-2-ylidene)amino)propan-2-ol (IPADM-2-BOL).
View Article and Find Full Text PDFThis review is designed to foster the discussion regarding the viability of postcombustion CO capture by water-lean solvents, by separating fact from fiction for both skeptics and advocates. We highlight the unique physical and thermodynamic properties of notable water-lean solvents, with a discussion of how such properties could translate to efficiency gains compared to aqueous amines. The scope of this review ranges from the purely fundamental molecular-level processes that govern solvent behavior to bench-scale testing, through process engineering and projections of process performance and cost.
View Article and Find Full Text PDFAnthropogenic CO emissions from point sources (e.g., coal fired-power plants) account for the majority of the greenhouse gases in the atmosphere.
View Article and Find Full Text PDFGold catalysis is considered one of the most important breakthroughs in organic synthesis during the last decade. Many gold-catalyzed reactions suffer from high catalyst loading, which is a serious limitation on the application of gold catalysis in larger scale synthesis. Because ligands play a major role in the tuning of reactivity of transition metal catalysts, there has been an increased effort on rationally understanding ligand effects in gold catalysis and using a rational ligand design to achieve higher efficiency.
View Article and Find Full Text PDFBiolubricants from Castor oil were produced enzymatically by transesterification with higher alcohols using a lipase mixture of immobilized Mucor miehei (RMIM) and immobilized Candida antarctica lipase B (Novozym 435) under low water conditions. The conversions were in the range of 80-95% under the optimized conditions.
View Article and Find Full Text PDFGold catalysts capable of promoting reactions at low-level loadings under mild conditions are the exception rather than the norm. We examined reactions where the regeneration of cationic gold catalyst (e.g.
View Article and Find Full Text PDFThe synergy of ultrasonication and the exposure to light radiation was found to be necessary in the formation of nanocomposites of silver and a protease alpha chymotrypsin. The reaction was carried out in aqueous medium and the process took just less than 35 min. Ultrasonication alone formed very negligible number of nanoparticles of <100 nm size whereas light alone produced enough number but the size of the particles was >100 nm.
View Article and Find Full Text PDFWith the suitable selection of a gold catalyst as well as the appropriate control of the reaction conditions, various new gold-catalyzed cyclizations of 2-alkynyl benzaldehyde with acyclic or cyclic vinyl ethers have been developed. Acetal-tethered dihydronaphthalene and isochromenes were obtained from the reactions of 2-alkynyl benzaldehydes with acyclic vinyl ethers under mild conditions. And, more interestingly, the gold-catalyzed reactions of 2-alkynyl benzaldehyde with a cyclic vinyl ether afforded the bicyclo[2.
View Article and Find Full Text PDFThe gold-catalyzed intramolecular oxygen-transfer reactions of 2-alkynyl-1,5-diketones or 2-alkynyl-5-ketoesters-obtained from tetra-n-butylammonium fluoride mediated Michael addition of activated allenes to electron-deficient olefins-furnished cyclopentenyl ketones under very mild conditions. These reactions proceeded much easier and faster than similar reactions reported in literature, and the corresponding products were obtained in very good yields. Mechanistic investigations on the cycloisomerization were carried out by means of both (18) O isotopic experiments and quantum chemical calculations.
View Article and Find Full Text PDF