Conical intersections are known to play a vital role in many photochemical processes. The breakdown of the Born-Oppenheimer approximation in the vicinity of a conical intersection causes exciting phenomena, such as the ultrafast radiationless decay of excited states. The passage of a molecule through a conical intersection creates a coherent superposition of electronic states via nonadiabatic couplings.
View Article and Find Full Text PDFUltrafast Raman spectroscopy with attosecond pulses in the extreme ultraviolet and X-ray regime has been proposed theoretically for tracking the non-adiabatic dynamics of molecules in great detail. The large bandwidth of these pulses, which span several electronvolts within a couple of femtoseconds, provides a unique tool for tracking non-adiabatic phenomena. However, spectroscopy with classical light is limited by the time-bandwidth product of the probe laser pulse.
View Article and Find Full Text PDFThe photochemistry of numerous molecular systems is influenced by conical intersections (CIs). These omnipresent nonadiabatic phenomena provide ultra-fast radiationless relaxation channels by creating degeneracies between electronic states and decide over the final photoproducts. In their presence, the Born-Oppenheimer approximation breaks down, and the timescales of the electron and nuclear dynamics become comparable.
View Article and Find Full Text PDFLinear off-resonant x-ray Raman techniques are capable of detecting the ultrafast electronic coherences generated when a photoexcited wave packet passes through a conical intersection. A hybrid femtosecond or attosecond probe pulse is employed to excite the system and stimulate the emission of the signal photon, where both fields are components of a hybrid pulse scheme. In this paper, we investigate how attosecond pulse trains, as provided by high-harmonic generation processes, perform as probe pulses in the framework of this spectroscopic technique, instead of single Gaussian pulses.
View Article and Find Full Text PDFConical Intersections (CIs), which are believed to be ubiquitous in molecular and biological systems, open up ultrafast nonradiative decay channels. A superposition of electronic states is created when a molecule passes through a CI and the nuclear wave packet branches. The resulting electronic coherence can be considered a unique signature of the CI.
View Article and Find Full Text PDFMany recent experimental ultrafast spectroscopy studies have hinted at non-adiabatic dynamics indicating the existence of conical intersections, but their direct observation remains a challenge. The rapid change of the energy gap between the electronic states complicated their observation by requiring bandwidths of several electron volts. In this manuscript, we propose to use the combined information of different x-ray pump-probe techniques to identify the conical intersection.
View Article and Find Full Text PDF