Introduction: Chondral defect repair is challenging due to a scarcity of reparative cells and the need to fill a large surface area, compounded by the absence of self-healing mechanisms. Fibronectin adhesion assay-derived chondroprogenitors (FAA-CPs) have emerged as a promising alternative with enhanced chondrogenic ability and reduced hypertrophy. De-cellularized bio-scaffolds are reported to act as extracellular matrix, mimicking the structural and functional characteristics of native tissue, thereby facilitating cell attachment and differentiation.
View Article and Find Full Text PDFBackground: Chondroprogenitors, with enhanced chondrogenic potential, have emerged to be a promising alternative for cell-based therapy in cartilage repair. Platelet-rich plasma (PRP), widely used for intra-articular treatment, has a short half-life. Freeze-dried PRP (FD-PRP), with an extended half-life and retained growth factors, is gaining attention.
View Article and Find Full Text PDFBackground: Histology forms an important component of first-year medical education. Unfortunately, it is limited to the practical laboratory due to the need for a microscope and good quality slides. Virtual microscopy is a recent advancement, which uses computers as an alternative to microscopes.
View Article and Find Full Text PDFThe recent discovery of progenitors based on their differential fibronectin-adhesion (FAA-CPs) and migratory-based (MCPs) assay has evoked interest due to their superiority in terms of their efficient chondrogenesis and reduced hypertrophic propensity. This study aims to isolate and enrich three articular cartilage subsets, chondrocytes, FAA-CPs, and MCPs, and compare their undifferentiated and chondrogenic differentiated status, using in-vitro phenotypical characterization in correlation with ultrastructural analysis using Transmission Electron Microscopy (TEM). Following informed consent, cartilage shavings were procured from a non-diseased human ankle joint and cultured to obtain the three subsets.
View Article and Find Full Text PDFDeplastination is the process of reversing plastination such that a plastinated specimen can be reverted to its raw nature. This would enable its use in the field of histopathology. The present study aims to ascertain if deplastinates can be used for histopathological studies after a time period.
View Article and Find Full Text PDFLimited self-restorative ability of the cartilage has necessitated the use of cell and tissue engineering based therapies. Recent advances in the isolation, expansion and characterization of articular cartilage derived chondroprogenitors(CPs) has gained popularity in its role for cartilage repair. Platelet rich plasma (PRP) is a reliable biological scaffold for in-vitro and in-vivo studies with reported therapeutic applications in cartilage and bone pathologies.
View Article and Find Full Text PDF