Publications by authors named "Deepak Soneji"

Background: Hispanic people compared to White people with multiple sclerosis (MS) are two times more likely to present with optic neuritis (ON). ON in dissemination in space (DIS) after a single attack is not part of the current McDonald 2017 criteria.

Objective: To evaluate if adding ON in DIS (ON-modified criteria) improves the performance of the McDonald 2017 criteria in the diagnosis of MS after a single attack of ON.

View Article and Find Full Text PDF

P2Y2 is a member of the P2Y family of G protein-coupled nucleotide receptors that is widely co-expressed with TRPV1 in peripheral sensory neurons of the dorsal root ganglia. To characterize P2Y2 function in cutaneous afferents, intracellular recordings from mouse sensory neurons were made using an ex vivo preparation in which hindlimb skin, saphenous nerve, dorsal root ganglia and spinal cord are dissected intact. The peripheral response properties of individual cutaneous C-fibers were analyzed using digitally controlled mechanical and thermal stimuli in male P2Y2(+/+) and P2Y2(-/-) mice.

View Article and Find Full Text PDF

Peripheral injury leads to a significant increase in the prevalence of mechanically insensitive, heat-sensitive C-fibers (CH) that contain the heat transducing TRPV1 (transient receptor potential vanilloid type I) channel in mice. We have recently shown that this recruitment of CH fibers is associated with increased expression of the receptor for GDNF (glial cell line-derived neurotrophic factor) family neurotrophic factor artemin (GFRα3), and that in vivo inhibition of GFRα3 prevented the increase in TRPV1 expression normally observed following axotomy. Here we have directly tested the hypothesis that the recruitment of functional CH fibers following nerve regeneration requires enhanced TRPV1 levels.

View Article and Find Full Text PDF

We have recently found that, following complete Freund's adjuvant (CFA)-induced inflammation, cutaneous polymodal nociceptors (CPM) lacking the transient receptor potential vanilloid 1 (TRPV1) are sensitized to heat stimuli. In order to determine possible mechanisms playing a role in this change, we examined gene expression in the L2/L3 sensory ganglia following CFA injection into the hairy hind paw skin and found that G-protein-coupled purinoreceptor P2Y1 expression was increased. This receptor is of particular interest, as most CPMs innervating mouse hairy skin bind isolectin B4, which co-localizes with P2Y1.

View Article and Find Full Text PDF

We have shown recently that following saphenous nerve transection and successful regeneration, cutaneous polymodal nociceptors (CPMs) lacking transient receptor potential vanilloid 1 (TRPV1) are sensitized to heat stimuli and that mechanically insensitive, heat-sensitive C-fibers (CHs) that contain TRPV1 increase in prevalence. Target-derived neurotrophic factor levels were also enhanced after axotomy and regeneration. In particular, the glial-cell line-derived neurotrophic factor (GDNF) family member artemin was found to be significantly enhanced in the hairy hindpaw skin and its receptor GDNF family receptor α3 (GFRα3) was increased in the L2/L3 dorsal root ganglia (DRGs) following nerve injury.

View Article and Find Full Text PDF

If an individual can learn to directly control activation of localized regions within the brain, this approach might provide control over the neurophysiological mechanisms that mediate behavior and cognition and could potentially provide a different route for treating disease. Control over the endogenous pain modulatory system is a particularly important target because it could enable a unique mechanism for clinical control over pain. Here, we found that by using real-time functional MRI (rtfMRI) to guide training, subjects were able to learn to control activation in the rostral anterior cingulate cortex (rACC), a region putatively involved in pain perception and regulation.

View Article and Find Full Text PDF