Publications by authors named "Deepak R Canchi"

Proteins are marginally stable, and the folding/unfolding equilibrium of proteins in aqueous solution can easily be altered by the addition of small organic molecules known as cosolvents. Cosolvents that shift the equilibrium toward the unfolded ensemble are termed denaturants, whereas those that favor the folded ensemble are known as protecting osmolytes. Urea is a widely used denaturant in protein folding studies, and the molecular mechanism of its action has been vigorously debated in the literature.

View Article and Find Full Text PDF

Trimethylamine N-oxide (TMAO) is a naturally occurring protecting osmolyte that stabilizes the folded state of proteins and also counteracts the destabilizing effect of urea on protein stability. Experimentally, it has been inferred that TMAO is preferentially excluded from the vicinity of protein surfaces. Here, we combine computer modeling and experimental measurements to gain an understanding of the mechanism of the protecting effect of TMAO on proteins.

View Article and Find Full Text PDF

Urea is a commonly used protein denaturant, and it is of great interest to determine its interaction with various protein groups to elucidate the molecular basis of its effect on protein stability. Using the Trp-cage miniprotein as a model system, we report what we believe to be the first computation of changes in the preferential interaction coefficient of the protein upon urea denaturation from molecular-dynamics simulations and examine the contributions from the backbone and the side-chain groups. The preferential interaction is obtained from reversible folding/unfolding replica exchange molecular-dynamics simulations of Trp-cage in presence of urea, over a wide range of urea concentration.

View Article and Find Full Text PDF

Though urea is commonly used to denature proteins, the molecular mechanism of its denaturing ability is still a subject of considerable debate. Previous molecular dynamics simulation studies have sought to elucidate the mechanism of urea denaturation by focusing on the pathway of denaturation rather than examining the effect of urea on the folding/unfolding equilibrium, which is commonly measured in experiment. Here we report the reversible folding/unfolding equilibrium of Trp-cage miniprotein in the presence of urea, over a broad range of urea concentrations, using all-atom Replica exchange MD simulations.

View Article and Find Full Text PDF