Publications by authors named "Deepak Ganesan"

Background: Respiratory rate is a crucial indicator of disease severity yet is the most neglected vital sign. Subtle changes in respiratory rate may be the first sign of clinical deterioration in a variety of disease states. Current methods of respiratory rate monitoring are labor-intensive and sensitive to motion artifacts, which often leads to inaccurate readings or underreporting; therefore, new methods of respiratory monitoring are needed.

View Article and Find Full Text PDF

This perspective outlines the Artificial Intelligence and Technology Collaboratories (AITC) at Johns Hopkins University, University of Pennsylvania, and University of Massachusetts, highlighting their roles in developing AI-based technologies for older adult care, particularly targeting Alzheimer's disease (AD). These National Institute on Aging (NIA) centers foster collaboration among clinicians, gerontologists, ethicists, business professionals, and engineers to create AI solutions. Key activities include identifying technology needs, stakeholder engagement, training, mentoring, data integration, and navigating ethical challenges.

View Article and Find Full Text PDF

Background: Our group has established the feasibility of using on-body electrocardiographic (ECG) sensors to detect cocaine use in the human laboratory. The purpose of the current study was to test whether ECG sensors and features are capable of discriminating cocaine use from other non-cocaine sympathomimetics.

Methods: Eleven subjects with cocaine use disorder wore the Zephyr BioHarness™ 3 chest band under six experimental (drug and non-drug) conditions, including 1) laboratory, intravenous cocaine self-administration, 2) after a single oral dose of methylphenidate, 3) during aerobic exercise, 4) during tobacco use (N=7 who smoked tobacco), and 5) during routine activities of daily inpatient living (unit activity).

View Article and Find Full Text PDF

Opioid use disorder is a medical condition with major social and economic consequences. While ubiquitous physiological sensing technologies have been widely adopted and extensively used to monitor day-to-day activities and deliver targeted interventions to improve human health, the use of these technologies to detect drug use in natural environments has been largely underexplored. The long-term goal of our work is to develop a mobile technology system that can identify high-risk opioid-related events (i.

View Article and Find Full Text PDF

Wearable sensors allow for portable, long-term health monitoring in natural environments. Recently, there has been an increase in demand for technology that can reliably monitor respiration, which can be indicative of cardiac diseases, asthma, and infection by respiratory viruses. However, to date, the most reliable respiration monitoring system involves a tightly worn chest belt that is not conducive to longitudinal monitoring.

View Article and Find Full Text PDF

Background: With nearly 20% of the US adult population using fitness trackers, there is an increasing focus on how physiological data from these devices can provide actionable insights about workplace performance. However, in-the-wild studies that understand how these metrics correlate with cognitive performance measures across a diverse population are lacking, and claims made by device manufacturers are vague. While there has been extensive research leading to a variety of theories on how physiological measures affect cognitive performance, virtually all such studies have been conducted in highly controlled settings and their validity in the real world is poorly understood.

View Article and Find Full Text PDF

Respiratory rate is an extremely important but poorly monitored vital sign for medical conditions. Current modalities for respiratory monitoring are suboptimal. This paper presents a proof of concept of a new algorithm using a contactless ultra-wideband (UWB) impulse radar-based sensor to detect respiratory rate in both a laboratory setting and in a two-subject case study in the Emergency Department.

View Article and Find Full Text PDF

Objectives: High medication adherence is important for HIV suppression (antiretroviral therapy) and pre-exposure prophylaxis efficacy. We are developing sensor-based technologies to detect pill-taking gestures, trigger reminders, and generate adherence reports.

Materials And Methods: We collected interview, observation, and questionnaire data from individuals with and at-risk for HIV ( = 17).

View Article and Find Full Text PDF

The ability to monitor eye closures and blink patterns has long been known to enable accurate assessment of fatigue and drowsiness in individuals. Many measures of the eye are known to be correlated with fatigue including coarse-grained measures like the rate of blinks as well as fine-grained measures like the duration of blinks and the extent of eye closures. Despite a plethora of research validating these measures, we lack wearable devices that can continually and reliably monitor them in the natural environment.

View Article and Find Full Text PDF

Mobile health research on illicit drug use detection typically involves a two-stage study design where data to learn detectors is first collected in lab-based trials, followed by a deployment to subjects in a free-living environment to assess detector performance. While recent work has demonstrated the feasibility of wearable sensors for illicit drug use detection in the lab setting, several key problems can limit lab-to-field generalization performance. For example, lab-based data collection often has low ecological validity, the ground-truth event labels collected in the lab may not be available at the same level of temporal granularity in the field, and there can be significant variability between subjects.

View Article and Find Full Text PDF

The human eye offers a fascinating window into an individual's health, cognitive attention, and decision making, but we lack the ability to continually measure these parameters in the natural environment. The challenges lie in: a) handling the complexity of continuous high-rate sensing from a camera and processing the image stream to estimate eye parameters, and b) dealing with the wide variability in illumination conditions in the natural environment. This paper explores the power-robustness tradeoffs inherent in the design of a wearable eye tracker, and proposes a novel staged architecture that enables graceful adaptation across the spectrum of real-world illumination.

View Article and Find Full Text PDF

The human eye offers a fascinating window into an individual's health, cognitive attention, and decision making, but we lack the ability to continually measure these parameters in the natural environment. We demonstrate CIDER, a system that operates in a highly optimized low-power mode under indoor settings by using a fast Search-Refine controller to track the eye, but detects when the environment switches to more challenging outdoor sunlight and switches models to operate robustly under this condition. Our design is holistic and tackles a) power consumption in digitizing pixels, estimating pupillary parameters, and illuminating the eye via near-infrared and b) error in estimating pupil center and pupil dilation.

View Article and Find Full Text PDF

Mobile sensor data-to-knowledge (MD2K) was chosen as one of 11 Big Data Centers of Excellence by the National Institutes of Health, as part of its Big Data-to-Knowledge initiative. MD2K is developing innovative tools to streamline the collection, integration, management, visualization, analysis, and interpretation of health data generated by mobile and wearable sensors. The goal of the big data solutions being developed by MD2K is to reliably quantify physical, biological, behavioral, social, and environmental factors that contribute to health and disease risk.

View Article and Find Full Text PDF

Backscatter provides dual-benefits of energy harvesting and low-power communication, making it attractive to a broad class of wireless sensors. But the design of a protocol that enables extremely power-efficient radios for harvesting-based sensors as well as high-rate data transfer for data-rich sensors presents a conundrum. In this paper, we present a new backscatter communication protocol where nodes blindly transmit data as and when they sense.

View Article and Find Full Text PDF

Smoking-induced diseases are known to be the leading cause of death in the United States. In this work, we design , a mobile solution that leverages a wristband containing a 9-axis inertial measurement unit to capture changes in the orientation of a person's arm, and a machine learning pipeline that processes this data to accurately detect smoking gestures and sessions in real-time. Our key innovations are fourfold: a) an arm trajectory-based method that extracts candidate hand-to-mouth gestures, b) a set of trajectory-based features to distinguish smoking gestures from confounding gestures including eating and drinking, c) a probabilistic model that analyzes sequences of hand-to-mouth gestures and infers which gestures are part of individual smoking sessions, and d) a method that leverages multiple IMUs placed on a person's body together with 3D animation of a person's arm to reduce burden of self-reports for labeled data collection.

View Article and Find Full Text PDF

Continuous, real-time tracking of eye gaze is valuable in a variety of scenarios including hands-free interaction with the physical world, detection of unsafe behaviors, leveraging visual context for advertising, life logging, and others. While eye tracking is commonly used in clinical trials and user studies, it has not bridged the gap to everyday consumer use. The challenge is that a real-time eye tracker is a power-hungry and computation-intensive device which requires continuous sensing of the eye using an imager running at many tens of frames per second, and continuous processing of the image stream using sophisticated gaze estimation algorithms.

View Article and Find Full Text PDF

Thanks to advances in mobile sensing technologies, it has recently become practical to deploy wireless electrocardiograph sensors for continuous recording of ECG signals. This capability has diverse applications in the study of human health and behavior, but to realize its full potential, new computational tools are required to effectively deal with the uncertainty that results from the noisy and highly non-stationary signals collected using these devices. In this work, we present a novel approach to the problem of extracting the morphological structure of ECG signals based on the use of dynamically structured conditional random field (CRF) models.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionm1r84749el237tbbtkescrukt7gevre6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once