Background: By virtue of its proximity to structures vital to cardiac conduction, aortomitral continuity calcification (AMCC) may help identify patients at highest risk for developing atrioventricular conduction disease requiring permanent pacemaker implantation (PPMI). We aim to determine the association of AMCC and need for PPMI after transcatheter aortic valve replacement.
Methods: Of 614 patients who underwent transcatheter aortic valve replacement (11.
Purpose: We sought to determine the performance of an automated computed tomography (CT) software that provides dynamic annular measurements of all available cardiac phases for transcatheter aortic valve replacement (TAVR) sizing as compared to the standard single manual measurement.
Materials And Methods: In 60 TAVR patients (84±7 years, 60% male) who underwent pre-procedural CT scans, we measured the aortic annular diameters, perimeter, and area using (1) the dynamic automated CT measurements and (2) standard single manual measurement from the cardiac phase of maximum systolic opening by visual estimate.
Results: The automated software was successful in providing annular measurements in 43/60 (72%) of cases, with the remainder requiring semi-automated contours.
In the fields of clinical diagnostics and point-of-care diagnosis as well as food and environmental monitoring there is a high demand for reliable high-throughput, rapid and highly sensitive assays for a simultaneous detection of several analytes in complex and low-volume samples. Sensor platforms based on solution-processable electrolyte-gated carbon nanotube field-effect transistors (CNT-FETs) are a simple and cost-effective alternative for conventional assays. In this work we demonstrate a selective as well as direct detection of the products of an enzyme-substrate interaction, here the for metabolic processes important urea-urease system, with sensors based on spray-coated CNT-FETs.
View Article and Find Full Text PDF