The high-order finite difference real-space pseudopotential density functional theory (DFT) approach is a valuable method for large-scale, massively parallel DFT calculations. A significant challenge in the approach is the oscillating "egg-box" error introduced by aliasing associated with a coarse grid spacing. To address this issue while minimizing computational cost, we developed a finite difference interpolation (FDI) scheme [Roller et al.
View Article and Find Full Text PDFThe real-space pseudopotential approach is a well-known method for large-scale density functional theory (DFT) calculations. One of its main limitations, however, is the introduction of errors associated with the positioning of the underlying real-space grid, a phenomenon usually known as the "egg-box" effect. The effect can be controlled by using a finer grid, but this raises the cost of the calculations or even undermines their feasibility altogether.
View Article and Find Full Text PDF