Lipid droplets are crucial organelles involved in cellular energy storage and metabolism, which is key in maintaining energy homeostasis through lipophagy. In this work, we successfully synthesized donor-acceptor chalcone derivatives (M1-M3) with improved photophysical characteristics, such as significant Stokes shifts and strong emission features. DFT and TDDFT calculations have been employed to evaluate the structure-property relationship of the chalcone derivatives.
View Article and Find Full Text PDFThis paper explores the use of a di-cationic fluorophore for visualizing mitochondria in live cells independent of membrane potential. Through the synthesized di-cationic fluorophore, we investigate the monitoring of viscosity, ferroptosis, stress-induced mitophagy, and lysosomal uptake of damaged mitochondria. The designed fluorophore is based on DQAsomes, cationic vesicles responsible for transporting drugs and DNA to mitochondria.
View Article and Find Full Text PDFStudying the viscosity of lipid droplets (LDs) provides insights into various diseases associated with LD viscosity. Ferroptosis is one such process in which LD viscosity increases due to the abnormal accumulation of lipid ROS (reactive oxygen species) caused by peroxidation. For investigating the LD imaging and ferroptosis, we developed two molecules (NNS and DNS) that show significant Stokes shifts (182-232 nm) and utilized them for sub-cellular imaging.
View Article and Find Full Text PDFLipid droplets (LDs) have emerged as major regulators of cellular metabolism, encompassing lipid storage, membrane synthesis, viral replication, and protein degradation. Exclusive studies have suggested a direct link between LDs and cancer, as a notable abundance of LDs is found in cancerous cells. Therefore, monitoring the location, distribution, and movements of LDs is of paramount importance for understanding their involvement in biological processes.
View Article and Find Full Text PDFHypochlorous acid (HOCl) is critical for maintaining immune system balance, but it can harm mitochondria by hindering enzyme activity, leading to decreased ATP and increased cell death. In this study, we have designed a fluorophore with a pyridinium scaffold for selective staining of the mitochondria and to detect hypochlorite. The fluorophore exhibits strong solvatochromic emission due to intramolecular charge transfer and excellent sub-cellular localization in the mitochondria.
View Article and Find Full Text PDFChem Commun (Camb)
February 2022
Advances in developing organic fluorescent probes and fluorescence imaging techniques have enhanced our understanding of cell biology. The endoplasmic reticulum (ER) is a dynamic structure that plays a crucial role in protein synthesis, post-translational modifications, and lipid metabolism. The malfunction of ER contributes to several physiological and pathological conditions.
View Article and Find Full Text PDF