Purpose: To determine if deep learning artificial intelligence algorithms can be used to accurately identify key morphologic landmarks on oocytes and cleavage stage embryo images for micromanipulation procedures such as intracytoplasmic sperm injection (ICSI) or assisted hatching (AH).
Methods: Two convolutional neural network (CNN) models were trained, validated, and tested over three replicates to identify key morphologic landmarks used to guide embryologists when performing micromanipulation procedures. The first model (CNN-ICSI) was trained (n = 13,992), validated (n = 1920), and tested (n = 3900) to identify the optimal location for ICSI through polar body identification.
In machine learning for image-based medical diagnostics, supervised convolutional neural networks are typically trained with large and expertly annotated datasets obtained using high-resolution imaging systems. Moreover, the network's performance can degrade substantially when applied to a dataset with a different distribution. Here, we show that adversarial learning can be used to develop high-performing networks trained on unannotated medical images of varying image quality.
View Article and Find Full Text PDFDeep-learning (DL)-based image processing has potential to revolutionize the use of smartphones in mobile health (mHealth) diagnostics of infectious diseases. However, the high variability in cellphone image data acquisition and the common need for large amounts of specialist-annotated images for traditional DL model training may preclude generalizability of smartphone-based diagnostics. Here, we employed adversarial neural networks with conditioning to develop an easily reconfigurable virus diagnostic platform that leverages a dataset of smartphone-taken microfluidic chip photos to rapidly generate image classifiers for different target pathogens on-demand.
View Article and Find Full Text PDF