Recently, several methods for SARS-CoV-2 detection have been developed to obtain rapid, portable, cheap, and easy-to-use diagnostic tools. This review paper summarizes and discusses studies on the development of point-of-care devices for SARS-CoV-2 diagnosis with comparisons between them from several aspects. Various detection methods of the recently developed portable COVID-19 biosensor will be presented in this review.
View Article and Find Full Text PDFThis study aims to observe the wicking and separation characteristics of blood plasma in a cotton thread matrix functioning as a microfluidic thread-based analytical device (μTAD). We investigated several cotton thread treatment methods using ethylenediaminetetraacetic acid (EDTA) anticoagulant solution for wicking whole blood samples and separating its plasma. The blood of healthy Indonesian thin tailed sheep was used in this study to understand the properties of horizontal wicking and separation on the EDTA-treated μTAD.
View Article and Find Full Text PDFLactate measurement is vital in clinical diagnostics especially among trauma and sepsis patients. In recent years, it has been shown that saliva samples are an excellent applicable alternative for non-invasive measurement of lactate. In this study, we describe a method for the determination of lactate concentration in saliva samples by using a simple and low-cost cotton fabric-based electrochemical device (FED).
View Article and Find Full Text PDFThis paper describes the fabrication of microfluidic cloth-based analytical devices (μCADs) using a simple wax patterning method on cotton cloth for performing colorimetric bioassays. Commercial cotton cloth fabric is proposed as a new inexpensive, lightweight, and flexible platform for fabricating two- (2D) and three-dimensional (3D) microfluidic systems. We demonstrated that the wicking property of the cotton microfluidic channel can be improved by scouring in soda ash (Na(2)CO(3)) solution which will remove the natural surface wax and expose the underlying texture of the cellulose fiber.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2011
Optical Coherence Tomography is a high resolution imaging technique able to provide in-depth information about living tissue. Among all its applications, it can be argued that surgical guidance is one of the most demanding in terms of system reliability, footprint and cost. In order to enable faster adoption of this technology in that field, we had already developed and demonstrated a new type of scanning delay line based on the thermo-optic effect of silicon.
View Article and Find Full Text PDFA novel method for detecting interaction between DNA and DNA-binding protein at single molecular level has been proposed. In this study, estrogen receptor-alpha (ER-alpha) was used for biosensing as the proof-example. A 518 bp-long (ca.
View Article and Find Full Text PDF