Publications by authors named "Deduo Xu"

In this study, high-performance liquid chromatography-evaporative light scattering detection (HPLC-ELSD) and HPLC-mass spectrometry (HPLC-MS) were employed for the quantitative analysis of steroidal saponins of . The HPLC-ELSD method was simple, accurate, and repeatable, and the recoveries were 97.91%∼99.

View Article and Find Full Text PDF

Thirty-six compounds were isolated from extract of the stem bark of Illicium burmanicum, including twelve previously undescribed prenylated C6-C3 compounds and a norsesquiterpene lactone: illicidione D (1), illicidione E (2), illicidione F (3), illicidione G (4), (2R,4S,11R)-12-O-ethylillifunone C (5), (2R,4S,11R)-illifunone C-12-O-β-d-glucopyranoside (6), (2R,4S,11R)-2-hydroxyillifunone C (7), 4-epi-2,3-dehydroillifunone C (8), illiburmanone A (9), illiburmanone B (10), illiburmanlactone A (11), (2S,4S,5S,11R)-2,3-dihydroillicione E (12), and illiburmanolside A (13). Their structures were determined based on extensive spectroscopic data analyses, including MS, NMR, and ECD spectra. The anti-inflammatory activity of the isolated compounds (1-36) was evaluated, and compounds 7, 12, 14, and 18 exhibited inhibitory effects in RAW 264.

View Article and Find Full Text PDF

Objectives: Ulinastatin has been applied in various diseases associated with inflammation, but its effectiveness lacks real-world evidence. We aimed to evaluate the effectiveness of ulinastatin based on a real-world database in the intensive care unit (ICU) patients.

Methods: This was a retrospective cohort study.

View Article and Find Full Text PDF

Background: Ulinastatin has been applied in a series of diseases associated with inflammation but its clinical effects remain somewhat elusive.

Objective: We aimed to investigate the potential effects of ulinastatin on organ failure patients admitted to the intensive care unit (ICU).

Methods: This is a single-center retrospective study on organ failure patients from 2013 to 2019.

View Article and Find Full Text PDF

The combined prescriptions of nirmatrelvir/ritonavir and other drugs are limited due to potential drug-drug interactions, so therapeutic drug monitoring (TDM) becomes particularly important. In this study, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was established for determination of the nirmatrelvir/ritonavir in plasma of patients with COVID-19, providing technical and theoretical support for the TDM. Plasma samples were processed by protein precipitation using acetonitrile, and analytes were separated on an Agilent Poroshell 120 SB-C18 (2.

View Article and Find Full Text PDF

Azvudine (FNC) is a new drug conditionally approved in 2022 for the treatment of coronavirus disease 2019 (COVID-19) in China. However, the exposure level of FNC in COVID-19 patients in clinical practice is still obscure, and there is no liquid chromatography-tandem mass spectrometry (LC-MS/MS) or LC method reported for quantifying the FNC. In this study, a simple, fast, and reliable LC-MS/MS method using L-phenylalanine-D5 (Phe-D5) as the internal standard (IS) was developed for the quantification of FNC in plasma from COVID-19 patients.

View Article and Find Full Text PDF

Background: Tanreqing capsules (TRQCs) and Tanreqing injections (TRQIs) are widely used in the treatment of respiratory diseases. In this study, a simple, rapid, and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for simultaneous quantification of the main components of Tanreqing, which include chlorogenic acid, ursodeoxycholic acid, chenodeoxycholic acid, and baicalin, in beagle dog plasma to compare their pharmacokinetic parameters.

Methods: Plasma samples were pretreated with protein precipitation.

View Article and Find Full Text PDF