Publications by authors named "Dedonder-Lardeux C"

The photodetachment and stability of R-Mandelate, the deprotonated form of the R-Mandelic acid, was investigated by observing the neutral species issued from either simple photodetachment or dissociative photodetachment in a cold anions set-up. R-Mandalate has the possibility to form an intramolecular ionic hydrogen-bond between adjacent hydroxyl and carboxylate groups. The potential energy surface along the proton transfer (PT) coordinate between both groups (O …H … OCO) features a single local minima, with the proton localized on the O group (OH… OCO).

View Article and Find Full Text PDF

The decarboxylation (CO loss) mechanism of cold monodeprotonated phthalic acid was studied in a photodissociation action spectrometer by quantifying mass-selected product anions and neutral particles as a function of the excitation energy. The analysis proceeded by interpreting the translational energy distribution of the generated uncharged products, and with the help of quantum calculations. In particular, this study reveals different fragmentation pathways in the deprotonated anion and in the radical generated upon electron photodetachment.

View Article and Find Full Text PDF

The photocatalytic oxidation of water with molecular or polymeric N-heterocyclic chromophores is a topic of high current interest in the context of artificial photosynthesis, that is, the conversion of solar energy to clean fuels. Hydrogen-bonded clusters of N-heterocycles with water molecules in a molecular beam are simple model systems for which the basic mechanisms of photochemical water oxidation can be studied under well-defined conditions. In this work, we explored the photoinduced H-atom transfer reaction in pyrimidine-water clusters yielding pyrimidinyl and hydroxyl radicals with laser spectroscopy, mass spectrometry and trajectory-based ab initio molecular dynamics simulations.

View Article and Find Full Text PDF

The competition between dissociative photodetachment and photodissociation of cold benzoate and naphthoate anions was studied through measurement of the kinetic energy of the neutral fragments and intact parent benzoyloxy and naphtoyloxy radicals as well as by detecting the anionic fragments whenever they are produced. For the benzoate anion, there is no ionic photodissociation and the radical dissociation occurs near the vertical photodetachment energy. This is in agreement with DFT calculations showing that the dissociation energy in CO2 and C6H5˙ is very low.

View Article and Find Full Text PDF

Experimental and theoretical investigations of the excited states of protonated 1- and 2-aminonaphthalene are presented. The electronic spectra are obtained by laser induced photofragmentation of the ions captured in a cold ion trap. Using ab initio calculations, the electronic spectra can be assigned to different tautomers which have the proton on the amino group or on the naphthalene moiety.

View Article and Find Full Text PDF

Charge transfer reactions are ubiquitous in chemical reactivity and often viewed as ultrafast processes. For DNA, femtochemistry has undeniably revealed the primary stage of the deactivation dynamics of the locally excited state following electronic excitation. We here demonstrate that the full time scale excited state dynamics can be followed up to milliseconds through an original pump-probe photodissociation scheme applied to cryogenic ion spectroscopy.

View Article and Find Full Text PDF

In aromatic systems that contain an amino group, there is competition between protonation on a carbon atom of the skeleton and protonation on the amino group. Herein, we studied the photofragmentation of protonated 1-aminopyrene in a cold ion trap and mainly observed the protonated amino tautomer, which led to fragmentation pathways through the loss of H or NH groups. Several excited states were assigned, among which the fourth excited state showed broadened bands, thus indicating a fast decay that was attributed to the presence of a πσ* charge-transfer state by comparison of the experimental results with ab initio calculations.

View Article and Find Full Text PDF

Photofragmentation electronic spectra of isolated single-isomeric N-protonated quinoline (quinolinium) and isoquinoline (isoquinolinium) ions have been measured at a temperature of ∼40 K using a mass-selective, 10 cm spectral resolution, photodissociation spectrometer. Additionally, ab initio adiabatic transition energies calculated using the RI-ADC(2) method have been employed to assist in the assignment of the spectra. Three electronic transitions having ππ* character were clearly evidenced for both protonated ions within the UV and deep-UV spectral ranges.

View Article and Find Full Text PDF

The conformer-selected ultraviolet (UV) and infrared (IR) spectra of protonated noradrenaline were measured using an electrospray/cryogenic ion trap technique combined with photo-dissociation spectroscopy. By comparing the UV photo dissociation (UVPD) spectra with the UV-UV hole burning (HB) spectra, it was found that five conformers coexist under ultra-cold conditions. Based on the spectral features of the IR dip spectra of each conformer, two different conformations on the amine side chain were identified.

View Article and Find Full Text PDF

The gas phase structure and excited state lifetime of the p-aminophenolp-cresol heterodimer have been investigated by REMPI and LIF spectroscopy with nanosecond laser pulses and pump-probe experiments with picosecond laser pulses as a model system to study the competition between π-π and H-bonding interactions in aromatic dimers. The excitation is a broad and unstructured band. The excited state of the heterodimer is long lived (2.

View Article and Find Full Text PDF

Ab initio calculations predict that pyridine (Py) can act as a photo-catalyst to split water by the absorption of a UV photon following the reaction Py-HO + hν → PyH˙ + OH˙. To test this prediction, we performed two types of experiments: in the first, we characterize the electronic spectroscopy of the PyH˙ radical in the gas phase. In the second, we evidence the reaction through the UV excitation of molecular Py-(HO) clusters obtained in a supersonic expansion and monitoring the PyH˙ reaction product.

View Article and Find Full Text PDF

Gas phase photodissociation electronic spectra of protonated azobenzene (ABH(+)) and 4-(dimethylamino)azobenzene (dmaABH(+)) were measured in a cryogenically cooled ion trap at temperatures of a few tens of Kelvin. Experimental results were complemented with electronic structure calculations in the ground state at the MP2/cc-pVDZ level of theory, and in the low lying excited states using the RI-CC2 method. Calculated energies revealed that only the trans isomers of the azonium molecular ions (protonation site on the azo group) will likely exist in the trap at the temperatures achieved in the experiment.

View Article and Find Full Text PDF

The excited state properties of protonated ortho (2-), meta (3-), and para (4-) aminopyridine molecules have been investigated through UV photofragmentation spectroscopy and excited state coupled-cluster CC2 calculations. Cryogenic ion spectroscopy allows recording well-resolved vibronic spectroscopy that can be reproduced through Franck-Condon simulations of the ππ* local minimum of the excited state potential energy surface. The excited state lifetimes have also been measured through a pump-probe excitation scheme and compared to the estimated radiative lifetimes.

View Article and Find Full Text PDF

The gas phase structure and excited state dynamics of o-aminophenol-H2O complex have been investigated using REMPI, IR-UV hole-burning spectroscopy, and pump-probe experiments with picoseconds laser pulses. The IR-UV spectroscopy indicates that the isomer responsible for the excitation spectrum corresponds to an orientation of the OH bond away from the NH2 group. The water molecule acts as H-bond acceptor of the OH group of the chromophore.

View Article and Find Full Text PDF

We present photo-fragmentation electronic spectra of the simplest protonated aromatic molecules, protonated benzene and toluene, recorded under medium resolution conditions and compared with the photo-fragmentation spectrum of protonated pyridine. Despite the resolution and cold temperature achieved in the experiment, the electronic spectra of protonated benzene and toluene are structure-less, thus intrinsically broadened. This is in agreement with the large geometrical changes and the fast dynamic toward internal conversion predicted by ab initio calculations for protonated benzene [Rode et al.

View Article and Find Full Text PDF

Recently, DNA molecules have received great attention because of their potential applications in material science. One interesting example is the production of highly fluorescent and tunable DNA-Agn clusters with cytosine (C)-rich DNA strands. Here, we report the UV photofragmentation spectra of gas-phase cytosine···Ag(+)···cytosine (C2Ag(+)) and cytosine···H(+)···cytosine (C2H(+)) complexes together with theoretical calculations.

View Article and Find Full Text PDF

A novel method for double-resonance spectroscopy in a cold quadrupole ion trap is presented, which utilizes dipolar resonant excitation of fragment ions in the quadrupole ion trap. Photofragments by a burn laser are removed by applying an auxiliary RF to the trap, and a probe laser detects the depletion of photofragments by the burn laser. By scanning the wavelength of the burn laser, conformation-specific UV spectrum of a cold ion is obtained.

View Article and Find Full Text PDF

The photo-induced damages of DNA in interaction with metal cations, which are found in various environments, still remain to be characterized. In this paper, we show how the complexation of a DNA base (cytosine (Cyt)) with a metal cation (Ag(+)) changes its electronic properties. By means of UV photofragment spectroscopy of cold ions, it was found that the photoexcitation of the CytAg(+) complex at low energy (315-282) nm efficiently leads to ionized cytosine (Cyt(+)) as the single product.

View Article and Find Full Text PDF

The best determination of the most stable protonation site in aromatic molecules relies nowadays on the IR spectroscopy and ab initio calculations. It appears that these methods are not necessarily unambiguous and cannot always be safely employed. We present in this paper an example showing that electronic spectroscopy of cold ions complemented with ab initio calculations gives clear results on the protonation site.

View Article and Find Full Text PDF

The very fast relaxation of the excited states to the ground state in DNA/RNA bases is a necessary process to ensure the photostability of DNA and its rate is highly sensitive to the tautomeric form of the bases. Protonation of the bases plays a crucial role in many biochemical and mutagenic processes and it can result in alternative tautomeric structures, thus making important the knowledge of the properties of protonated DNA/RNA bases. We report here the photofragmentation spectra of the five protonated DNA/RNA bases.

View Article and Find Full Text PDF

The gas phase structure of 2-aminophenol has been investigated using UV-UV as well as IR-UV hole burning spectroscopy. The presence of a free OH vibration in the IR spectrum rules out the contribution of the cis isomer, which is expected to have an intramolecular H-bond, to the spectra. The excited state lifetimes of different vibronic levels have been measured with pump-probe picosecond experiments and are all very short (35 ± 5) ps as compared to other substituted phenols.

View Article and Find Full Text PDF

The electronic spectra of cold protonated aromatic amines: anilineH(+) C6H5-NH3(+), benzylamineH(+) C6H5-CH2-NH3(+) and phenylethylamineH(+) C6H5-(CH2)2-NH3(+) have been investigated experimentally in a large spectral domain and are compared to those of their hydroxyl homologues. In the low energy region, the electronic spectra are similar to their neutral analogues, which reveals the ππ* character of their first excited state. A second transition is observed from 0.

View Article and Find Full Text PDF

The electronic spectra of cold benzylium (C6H5-CH2 (+)) and 1-phenylethyl (C6H5-CH-CH3 (+)) cations have been recorded via photofragment spectroscopy. Benzylium and 1-phenylethyl cations produced from electrosprayed benzylamine and phenylethylamine solutions, respectively, were stored in a cryogenically cooled quadrupole ion trap and photodissociated by an OPO laser, scanned in parts of the UV and visible regions (600-225 nm). The electronic states and active vibrational modes of the benzylium and 1-phenylethyl cations as well as those of their tropylium or methyl tropylium isomers have been calculated with ab initio methods for comparison with the spectra observed.

View Article and Find Full Text PDF

The excited state dynamics of the H-bonded 7-azaindole-phenol complex (7AI-PhOH) has been studied by combination of picosecond pump and probe experiments, LIF measurements on the nanosecond time scale and ab initio calculations. A very short S(1) excited state lifetime (30 ps) has been measured for the complex upon excitation of the 0(0)(0) transition and the lifetime remains unchanged when the ν(6) vibrational mode (0(0)(0) + 127 cm(-1)) is excited. In addition, no UV-visible fluorescence was observed by exciting the complex with nanosecond pulses.

View Article and Find Full Text PDF

Excited-state intramolecular proton transfer (ESIPT) reaction has been studied in a molecule showing dual fluorescence, the 2,5-bis(2-benzoxazolyl)-4-methoxyphenol (BBMP), and its isotopomers, where the methoxy, and alternatively, the OH group has been deuterated. Attention is focused on the influence of electron donating OCH(3) substituent on fast excited state reaction. Comparison between the resonance-enhanced multiphoton ionization spectrum and the laser-induced excitation of the primary and phototautomeric emissions has been done.

View Article and Find Full Text PDF