Publications by authors named "Dedio J"

SAR342434 is a biosimilar of insulin lispro (Humalog® U-100). Batches of SAR342434 were compared with Humalog® batches of either EU or US origin in a panel of in vitro biological assays that included insulin binding to insulin receptor (IR) isoforms A (IR-A) and B (IR-B) and IR-A/IR-B autophosphorylation. A surface plasmon resonance biosensor-based assay was developed to characterize the kinetics of insulin binding to solubilized full-length IR-A or IR-B.

View Article and Find Full Text PDF

A novel integrated discovery platform has been used to synthesize and biologically assay a series of xanthine-derived dipeptidyl peptidase 4 (DPP4) antagonists. Design, synthesis, purification, quantitation, dilution, and bioassay have all been fully integrated to allow continuous automated operation. The system has been validated against a set of known DPP4 inhibitors and shown to give excellent correlation between traditional medicinal chemistry generated biological data and platform data.

View Article and Find Full Text PDF

Cytokines interleukin-1beta (IL-1beta) and interleukin-6 (IL-6) are involved in acute phase response (APR). C-reactive protein (CRP), the prototype acute phase protein, may represent an important component in the pathogenesis of arteriosclerosis and may also be a target for drug development. Inhibition of CRP synthesis is one potential strategy.

View Article and Find Full Text PDF

Obesity is a major risk factor in the development of chronic renal failure. Rimonabant, a cannabinoid CB1 receptor antagonist, improves body weight and metabolic disorders; however, its effect on mortality and chronic renal failure associated with obesity is unknown. Obese Zucker rats received either rimonabant or vehicle for 12 months and were compared to a pair-fed but untreated group of obese rats.

View Article and Find Full Text PDF

The carotid body is an arterial chemoreceptor organ that senses arterial pO(2) and pH. Previous studies have indicated that both reactive oxygen species (ROS) and nitric oxide (NO) are important potential mediators that may be involved in the response of the carotid body to hypoxia. However, whether their production by the chemosensitive elements of the carotid body is indeed oxygen-dependent is currently unclear.

View Article and Find Full Text PDF

Endothelial nitric oxide synthase (eNOS), the major nitric oxide (NO)-generating enzyme of the vasculature, is regulated through multiple interactions with proteins, including caveolin-1, Hsp90, Ca2+-calmodulin, and the recently discovered eNOS-interacting protein, NOSIP. Previous studies indicate that NOSIP may contribute to the intricate regulation of eNOS activity and availability. Because eNOS has been shown to be abundantly expressed in the airways, we determined the expression and cellular localization of NOSIP in rat trachea and lung by RT-PCR and immunohistochemistry and examined the interaction of NOSIP with eNOS in lung by coimmunoprecipitation.

View Article and Find Full Text PDF

Objective: C-reactive protein (CRP) is the prototype acute phase protein and a cardiovascular risk factor. Interleukin-1beta (IL-1beta) and IL-6 stimulate CRP synthesis in hepatocytes. We searched for additional pathways regulating CRP expression.

View Article and Find Full Text PDF
Article Synopsis
  • A study found that the antagonist HOE 140, typically used for the human B(2) receptor, acts as a full agonist for the chicken B(o) receptor.
  • Researchers created chimeric kinin receptors to analyze why HOE 140's effectiveness varies between different receptor types, discovering that its efficacy ranks as B(o)R > CKR-2 > CKR-1 > B(2)R.
  • The increased effectiveness of HOE 140 is linked to changes in the receptor's structure that affect its affinity for different states, rather than alterations in ligand binding sites or receptor expression levels.
View Article and Find Full Text PDF

Activity and localization of endothelial nitric oxide synthase (eNOS) is regulated in a remarkably complex fashion, yet the complex molecular machinery mastering stimulus-induced eNOS translocation and trafficking is poorly understood. In a search by the yeast two-hybrid system using the eNOS oxygenase domain as bait, we have identified a previously uncharacterized eNOS-interacting protein, dubbed NOSTRIN (for eNOS traffic inducer). NOSTRIN contains a single polypeptide chain of 506-aa residues of 58 kDa with an N-terminal cdc15 domain and a C-terminal SH3 domain.

View Article and Find Full Text PDF

Background & Aims: Recently, a yeast 2-hybrid screen served to identify a new endothelial nitric oxide synthase (eNOS)-interacting protein (NOSIP), which causes redistribution of eNOS from the plasma membrane to intracellular compartments and reduces eNOS activity. Its in situ distribution is unknown and is reported here in comparison with that of eNOS and neuronal NOS for the rat gastrointestinal tract.

Methods: Immunofluorescence was performed on acetone-fixed cryosections by using a polyclonal antiserum raised against a NOSIP-glutathione S-transferase fusion protein; specificity was verified by Western blotting.

View Article and Find Full Text PDF

Bradykinin released by the endothelium is thought to play an important local role in cardiovascular regulation. However, the molecular identity of endothelial proteases liberating bradykinin from its precursors remained unclear. Using RT-PCR and Southern blotting techniques we detected mRNA for tissue kallikrein (KLK1) in human umbilical vein endothelial cells and in bovine aortic endothelial cells.

View Article and Find Full Text PDF

A novel regulatory protein, tescalcin (TSC), recently isolated from mouse embryonic testes, has been implicated in gonadal differentiation. Employing the yeast two-hybrid system with the Na(+)/H(+) exchanger type-1 (NHE1) carboxyterminal domain as a bait we have identified a novel NHE1-associated protein of 214 amino acid residues representing the human homolog of mouse TSC (96.7% identity).

View Article and Find Full Text PDF

Production of nitric oxide (NO) in endothelial cells is regulated by direct interactions of endothelial nitric oxide synthase (eNOS) with effector proteins such as Ca2+-calmodulin, by posttranslational modifications such as phosphorylation via protein kinase B, and by translocation of the enzyme from the plasma membrane caveolae to intracellular compartments. Reversible acylation of eNOS is thought to contribute to the intracellular trafficking of the enzyme; however, protein factor(s) that govern the translocation of the enzyme are still unknown. Here we have used the yeast two-hybrid system and identified a novel 34 kDa protein, termed NOSIP (eNOS interacting protein), which avidly binds to the carboxyl-terminal region of the eNOS oxygenase domain.

View Article and Find Full Text PDF

Kininogens, the high molecular weight precursor of vasoactive kinins, bind to a wide variety of cells in a specific, reversible, and saturable manner. The cell docking sites have been mapped to domains D3 and D5(H) of kininogens; however, the corresponding cellular acceptor sites are not fully established. To characterize the major cell binding sites for kininogens exposed by the endothelial cell line EA.

View Article and Find Full Text PDF

We identified the multifunctional chaperon protein p32 as a protein kinase C (PKC)-binding protein interacting with PKCalpha, PKCzeta, PKCdelta, and PKC mu. We have analyzed the interaction of PKC mu with p32 in detail, and we show here in vivo association of PKC mu, as revealed from yeast two-hybrid analysis, precipitation assays using glutathione S-transferase fusion proteins, and reciprocal coimmunoprecipitation. In SKW 6.

View Article and Find Full Text PDF

gC1q receptor, a protein originally described as the cell surface receptor for the globular heads of complement factor C1q, has been found to bind human H-kininogen with high affinity and specificity. Therefore, gC1qR has been considered candidate kininogen docking site on the surfaces of platelets, neutrophils and endothelial cells. Recent work demonstrating that gC1qR is an intracellular protein that is tightly associated with mitochondria rather than targeted to the cell surface has challenged this view.

View Article and Find Full Text PDF

Neutrophil-borne heparin-binding protein (HBP) is a multifunctional protein involved in the progression of inflammation. HBP is stored in neutrophil granules and released upon stimulation of the cells in proximity to endothelial cells. HBP affects endothelial cells in multiple ways; however, the molecular and cellular mechanisms underlying the interaction of HBP with these cells are unknown.

View Article and Find Full Text PDF

Plasma prekallikrein, a zymogen of the contact phase system, circulates in plasma as heterodimeric complex with H-kininogen. The binding is mediated by the prekallikrein heavy chain consisting of four apple domains, A1 to A4, to which H-kininogen binds with high specificity and affinity (K(D) = 1.2 x 10(-8) M).

View Article and Find Full Text PDF

A protein of 33 kDa (p33) that tightly binds to the globular domains of the first complement component, C1q, is thought to serve as the major C1q receptor (gC1qR) on B cells, neutrophils, and mast cells. However, the cellular routing and the subcellular localization of p33/gC1qR are unknown. We have performed confocal laser-scanning microscopy and found that p33/gC1qR is present in intracellular compartments, where it colocalizes with the mitochondrial marker protein, pyruvate dehydrogenase.

View Article and Find Full Text PDF

In bovine aortic endothelial cells (BAECs), we previously demonstrated B1 and B2 kinin receptor-mediated increases in intracellular guanosine-3',5'-cyclic monophosphate (cGMP). In this study, the B2 kinin receptor agonist bradykinin increased cGMP in rat microvascular coronary endothelial cells (RMCECs) and human umbilical vein endothelial cells (HUVECs), which could be prevented with the specific B2 kinin receptor antagonist icatibant but not with the B1 kinin receptor antagonist des-Arg9-[Leu8]bradykinin or with the nonpeptide kinin receptor antagonist WIN 64338. B2 kinin receptor mRNA could be detected in all three cell types using reverse transcription-polymerase chain reaction and subsequent Southern blotting.

View Article and Find Full Text PDF

The endothelial protein p33/gC1qR is thought to mediate the assembly of components of the kinin-forming and complement-activating pathways on the surface of cardiovascular cells. FACS analysis of intact human umbilical vein endothelial cells using specific antibodies to p33 revealed a minor fluorescence on the cell surface whereas permeabilized cells showed a bright fluorescence indicative of an intracellular localization of p33. Immunostaining of fixed cells confirmed the predominant intracellular localization of p33.

View Article and Find Full Text PDF

Kininogens, the precursor proteins of the vasoactive kinins, bind specifically, reversibly, and saturably to platelets, neutrophils, and endothelial cells. Two domains of the kininogens expose major cell binding sites: domain D3 that is shared by H- and L-kininogen and domain D5H that is exclusively present in H-kininogen. Previously we have mapped the kininogen cell binding sites to 27 residues of D3 ("LDC27") and 20 residues of D5H ("HKH20"", respectively (Herwald, H.

View Article and Find Full Text PDF

Using a cDNA encoding the flavanone 3β-hydroxylase (FHT) from Dianthus caryophyllus (carnation) as a probe, we isolated the FHT gene from a genomic library. Sequence analysis revealed that the FHT gene consists of three exons and two introns. Two putative light-regulated elements were identified in the promoter region by sequence comparison.

View Article and Find Full Text PDF