Pharmacol Biochem Behav
November 2024
Ketamine is noted for its rapid onset antidepressant response and effectiveness in patients with treatment resistant depression. While most research has focused on glutamatergic mechanisms, recent studies show that antidepressant-like effects in rodents are dependent upon the serotonergic (5-HT) system and suggest a potential contribution of the 5-HT receptor. In this study we utilized CP-94253 to examine whether 5-HT receptor agonism produces rapid and sustained antidepressant-like effects, focusing on rodent models and treatment approaches commonly used to demonstrate the differentiated response to ketamine.
View Article and Find Full Text PDFDespite the rising prevalence of autism spectrum disorder (ASD), there remains a significant unmet need for pharmacotherapies addressing its core and associative symptoms. While some atypical antipsychotics have been approved for managing associated irritability and aggression, their use is constrained by substantial side effects. This study aimed firstly to develop behavioral measures to explore frustration, irritability and aggression phenotypes in the rat prenatal valproic acid (VPA) model of ASD.
View Article and Find Full Text PDFBackground: Metabolic syndrome (MetS), which can be induced or exacerbated by the current class of antipsychotic drugs, is highly prevalent in patients with schizophrenia and presents significant challenges to lifetime disease management. Supported by initial clinical results, trace amine-associated receptor 1 (TAAR1) agonists have emerged as potential novel treatments for schizophrenia. Notably, non-clinical studies have also shown weight-lowering and glucoregulatory effects of TAAR1 agonists, including the investigational agent ulotaront.
View Article and Find Full Text PDFObjective: Metabolic Syndrome, which can be induced or exacerbated by current antipsychotic drugs (APDs), is highly prevalent in schizophrenia patients. Recent preclinical and clinical evidence suggest that agonists at trace amine-associated receptor 1 (TAAR1) have potential as a new treatment option for schizophrenia. Intriguingly, preclinical tudies have also identified TAAR1 as a novel regulator of metabolic control.
View Article and Find Full Text PDFAberrant dopaminergic and glutamatergic function, particularly within the striatum and hippocampus, has repeatedly been associated with the pathophysiology of schizophrenia. Supported by preclinical and recent clinical data, trace amine-associated receptor 1 (TAAR1) agonism has emerged as a potential new treatment approach for schizophrenia. While current evidence implicates TAAR1-mediated regulation of dopaminergic tone as the primary circuit mechanism, little is known about the effects of TAAR1 agonists on the glutamatergic system and excitation-inhibition balance.
View Article and Find Full Text PDFDriven by co-evolution with pathogens, host immunity continuously adapts to optimize defence against pathogens within a given environment. Recent advances in genetics, genomics and transcriptomics have enabled a more detailed investigation into how immunogenetic variation shapes the diversity of immune responses seen across domestic and wild animal species. However, a deeper understanding of the diverse molecular mechanisms that shape immunity within and among species is still needed to gain insight into-and generate evolutionary hypotheses on-the ultimate drivers of immunological differences.
View Article and Find Full Text PDFEur Arch Psychiatry Clin Neurosci
October 2023
Ulotaront is a trace amine-associated receptor 1 (TAAR1) agonist in Phase 3 clinical development for the treatment of schizophrenia. Ulotaront was discovered through a unique, target-agnostic approach optimized to identify drug candidates lacking D2 and 5-HT2A receptor antagonism, while demonstrating an antipsychotic-like phenotypic profile in vivo. The mechanism of action (MOA) of ulotaront is thought to be mediated by agonism at TAAR1 and serotonin 5-HT1A receptors.
View Article and Find Full Text PDFHigh levels of proinflammatory cytokines induce neurotoxicity and catalyze inflammation-driven neurodegeneration, but the specific release mechanisms from microglia remain elusive. We demonstrate that secretory autophagy (SA), a non-lytic modality of autophagy for secretion of vesicular cargo, regulates neuroinflammation-mediated neurodegeneration via SKA2 and FKBP5 signaling. SKA2 inhibits SA-dependent IL-1β release by counteracting FKBP5 function.
View Article and Find Full Text PDFBackground: Several hypotheses have been proposed to explain parasite infection in parental species and their hybrids. Hybrid heterosis is generally applied to explain the advantage for F1 generations of hybrids exhibiting a lower level of parasite infection when compared to parental species. Post-F1 generations often suffer from genetic incompatibilities potentially reflected in the higher level of parasite infection when compared to parental species.
View Article and Find Full Text PDFPurpose: Ulotaront (SEP-363856) is a TAAR1 agonist with 5-HT agonist activity currently in clinical development for the treatment of schizophrenia. The objectives of the current study were to characterize the in vitro ADME properties, preclinical PK, and to evaluate the DDI potential of ulotaront and its major metabolite SEP-383103.
Methods: Solubility, permeability, plasma protein binding, CYP inhibition and induction, transporter inhibition and uptake studies were conducted in vitro.
Ulotaront (SEP-363856) is a trace-amine associated receptor 1 (TAAR1) agonist with 5-HT1A receptor agonist activity in Phase 3 clinical development, with FDA Breakthrough Therapy Designation, for the treatment of schizophrenia. TAAR1 is a G-protein-coupled receptor (GPCR) that is expressed in cortical, limbic, and midbrain monoaminergic regions. It is activated by endogenous trace amines, and is believed to play an important role in modulating dopaminergic, serotonergic, and glutamatergic circuitry.
View Article and Find Full Text PDFBackground: Ulotaront (SEP-363856) is a trace amine-associated receptor 1 (TAAR1) agonist with 5-hydroxytryptamine type 1A (5-HT1A) agonist activity that is currently in Phase 3 clinical development for the treatment of schizophrenia. Unlike available antipsychotics, the efficacy of ulotaront is not mediated by blockade of dopamine D2 or serotonin 5-HT2A receptors. In a short-term randomized clinical trial, ulotaront has demonstrated significant efficacy in the treatment of adults with an acute exacerbation of schizophrenia.
View Article and Find Full Text PDFTrace amine-associated receptor 1 (TAAR1) has emerged as a promising therapeutic target for neuropsychiatric disorders due to its ability to modulate monoaminergic and glutamatergic neurotransmission. In particular, agonist compounds have generated interest as potential treatments for schizophrenia and other psychoses due to TAAR1-mediated regulation of dopaminergic tone. Here, we review unmet needs in schizophrenia, the current state of knowledge in TAAR1 circuit biology and neuropharmacology, including preclinical behavioral, imaging, and cellular evidence in glutamatergic, dopaminergic and genetic models linked to the pathophysiology of psychotic, negative and cognitive symptoms.
View Article and Find Full Text PDFResponding to different dynamic levels of stress is critical for mammalian survival. Disruption of mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) signaling is proposed to underlie hypothalamic-pituitary-adrenal (HPA) axis dysregulation observed in stress-related psychiatric disorders. In this study, we show that FK506-binding protein 51 (FKBP5) plays a critical role in fine-tuning MR:GR balance in the hippocampus.
View Article and Find Full Text PDFSEP-363856 is a trace amine-associated receptor 1 (TAAR1) and 5-hydroxytryptamine type 1A (5-HT) agonist, currently in Phase 3 clinical trials for the treatment of schizophrenia. Although SEP-363856 activates TAAR1 and 5-HT receptors in vitro, an accessible marker of time- and concentration-dependent effects of SEP-363856 in humans is lacking. In rodents, SEP-363856 has been shown to suppress rapid eye movement (REM) sleep.
View Article and Find Full Text PDFPatients with schizophrenia show increased striatal dopamine synthesis capacity in imaging studies. The mechanism underlying this is unclear but may be due to N-methyl-D-aspartate receptor (NMDAR) hypofunction and parvalbumin (PV) neuronal dysfunction leading to disinhibition of mesostriatal dopamine neurons. Here, we develop a translational mouse model of the dopamine pathophysiology seen in schizophrenia and test approaches to reverse the dopamine changes.
View Article and Find Full Text PDFDysregulation of the corticotropin-releasing hormone (CRH) system has been implicated in stress-related psychopathologies such as depression and anxiety. Although most studies have linked CRH/CRH receptor 1 signaling to aversive, stress-like behavior, recent work has revealed a crucial role for distinct CRH circuits in maintaining positive emotional valence and appetitive responses under baseline conditions. Here we addressed whether deletion of CRH, specifically from GABAergic forebrain neurons ( mice) differentially affects general behavior under baseline and chronic stress conditions.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
October 2019
For the past 50 years, the clinical efficacy of antipsychotic medications has relied on blockade of dopamine D receptors. Drug development of non-D compounds, seeking to avoid the limiting side effects of dopamine receptor blockade, has failed to date to yield new medicines for patients. In this work, we report the discovery of SEP-363856 (SEP-856), a novel psychotropic agent with a unique mechanism of action.
View Article and Find Full Text PDFThe interplay between corticotropin-releasing hormone (CRH) and the dopaminergic system has predominantly been studied in addiction and reward, while CRH-dopamine interactions in anxiety are scarcely understood. We describe a new population of CRH-expressing, GABAergic, long-range-projecting neurons in the extended amygdala that innervate the ventral tegmental area and alter anxiety following chronic CRH depletion. These neurons are part of a distinct CRH circuit that acts anxiolytically by positively modulating dopamine release.
View Article and Find Full Text PDFChildren with atopic dermatitis (AD) usually develop symptoms when they reach the age of 6-7 years, but the risk of developing respiratory allergies, asthma and allergic rhinitis (AR) remains high. In most children with AD, the development of asthma and AR is associated with sensitization to food allergens and/or aeroallergens, while only a small percentage missed atopic diathesis. In about 35% of children with AD, food allergy is the provoking cause, and 60% of infants who had AD in the first 3 months of life were sensitized against aeroallergens by the age of 5.
View Article and Find Full Text PDFManganese-enhanced magnetic resonance imaging (MEMRI) exploits the biophysical similarity of Ca and Mn to map the brain's activity in vivo. However, to what extent different Ca channels contribute to the enhanced signal that MEMRI provides and how Mn dynamics influence Mn brain accumulation after systemic administration of MnCl are not yet fully understood. Here, we demonstrate that mice lacking the L-type Ca channel 1.
View Article and Find Full Text PDFA single nucleotide polymorphism substitution from glutamine (Gln, Q) to arginine (Arg, R) at codon 460 of the purinergic P2X7 receptor (P2X7R) has repeatedly been associated with mood disorders. The P2X7R-Gln460Arg variant per se is not compromised in its function. However, heterologous expression of P2X7R-Gln460Arg together with wild-type P2X7R has recently been demonstrated to impair receptor function.
View Article and Find Full Text PDF