Publications by authors named "Dedi Wang"

The weighted ensemble (WE) method stands out as a widely used segment-based sampling technique renowned for its rigorous treatment of kinetics. The WE framework typically involves initially mapping the configuration space onto a low-dimensional collective variable (CV) space and then partitioning it into bins. The efficacy of WE simulations heavily depends on the selection of CVs and binning schemes.

View Article and Find Full Text PDF

Understanding drug residence times in target proteins is key to improving drug efficacy and understanding target recognition in biochemistry. While drug residence time is just as important as binding affinity, atomic-level understanding of drug residence times through molecular dynamics (MD) simulations has been difficult primarily due to the extremely long time scales. Recent advances in rare event sampling have allowed us to reach these time scales, yet predicting protein-ligand residence times remains a significant challenge.

View Article and Find Full Text PDF

Markov state models (MSMs) have proven valuable in studying dynamics of protein conformational changes via statistical analysis of molecular dynamics (MD) simulations. In MSMs, the complex configuration space is coarse-grained into conformational states, with dynamics modeled by a series of Markovian transitions among these states at discrete lag times. Constructing the Markovian model at a specific lag time necessitates defining states that circumvent significant internal energy barriers, enabling internal dynamics relaxation within the lag time.

View Article and Find Full Text PDF

The weighted ensemble (WE) method stands out as a widely used segment-based sampling technique renowned for its rigorous treatment of kinetics. The WE framework typically involves initially mapping the configuration space onto a low-dimensional collective variable (CV) space and then partitioning it into bins. The efficacy of WE simulations heavily depends on the selection of CVs and binning schemes.

View Article and Find Full Text PDF

Markov state models (MSMs) have proven valuable in studying the dynamics of protein conformational changes via statistical analysis of molecular dynamics simulations. In MSMs, the complex configuration space is coarse-grained into conformational states, with dynamics modeled by a series of Markovian transitions among these states at discrete lag times. Constructing the Markovian model at a specific lag time necessitates defining states that circumvent significant internal energy barriers, enabling internal dynamics relaxation within the lag time.

View Article and Find Full Text PDF

Understanding drug residence times in target proteins is key to improving drug efficacy and understanding target recognition in biochemistry. While drug residence time is just as important as binding affinity, atomic-level understanding of drug residence times through molecular dynamics (MD) simulations has been difficult primarily due to the extremely long timescales. Recent advances in rare event sampling have allowed us to reach these timescales, yet predicting protein-ligand residence times remains a significant challenge.

View Article and Find Full Text PDF

While representation learning has been central to the rise of machine learning and artificial intelligence, a key problem remains in making the learned representations meaningful. For this, the typical approach is to regularize the learned representation through prior probability distributions. However, such priors are usually unavailable or are ad hoc.

View Article and Find Full Text PDF

While AlphaFold2 is rapidly being adopted as a new standard in protein structure predictions, it is limited to single structures. This can be insufficient for the inherently dynamic world of biomolecules. In this Letter, we propose AlphaFold2-RAVE, an efficient protocol for obtaining Boltzmann-ranked ensembles from sequence.

View Article and Find Full Text PDF

An effective implementation of enhanced sampling algorithms for molecular dynamics simulations requires knowledge of the approximate reaction coordinate describing the relevant mechanisms in the system. In this work, we focus on the recently developed artificial intelligence-based State Predictive Information Bottleneck (SPIB) approach and demonstrate how SPIB can learn such a reaction coordinate as a deep neural network even from undersampled trajectories. We exemplify its usefulness by achieving more than 40 times acceleration in simulating two model biophysical systems through well-tempered metadynamics performed by biasing along the SPIB-learned reaction coordinate.

View Article and Find Full Text PDF

We study NaCl ion-pair dissociation in a dilute aqueous solution using computer simulations both for the full system with long-range Coulomb interactions and for a well-chosen reference system with short-range intermolecular interactions. Analyzing results using concepts from Local Molecular Field (LMF) theory and the recently proposed AI-based analysis tool "State predictive information bottleneck" (SPIB), we show that the system with short-range interactions can accurately reproduce the transition rate for the dissociation process, the dynamics for moving between the underlying metastable states, and the transition state ensemble. Contributions from long-range interactions can be largely neglected for these processes because long-range forces from the direct interionic Coulomb interactions are almost completely canceled (>90%) by those from solvent interactions over the length scale where the transition takes place.

View Article and Find Full Text PDF

The ability to make sense of the massive amounts of high-dimensional data generated from molecular dynamics simulations is heavily dependent on the knowledge of a low-dimensional manifold (parameterized by a reaction coordinate or RC) that typically distinguishes between relevant metastable states, and which captures the relevant slow dynamics of interest. Methods based on machine learning and artificial intelligence have been proposed over the years to deal with learning such low-dimensional manifolds, but they are often criticized for a disconnect from more traditional and physically interpretable approaches. To deal with such concerns, in this work we propose a deep learning based state predictive information bottleneck approach to learn the RC from high-dimensional molecular simulation trajectories.

View Article and Find Full Text PDF

Biological processes that execute complex multiple functions, such as the cell cycle, must ensure the order of sequential events and maintain dynamic robustness against various fluctuations. Here, we examine the mechanisms and fundamental structure that achieve these properties in the cell cycle of the budding yeast Saccharomyces cerevisiae. We show that this process behaves like an excitable system containing three well-decoupled saddle-node bifurcations to execute DNA replication and mitosis events.

View Article and Find Full Text PDF

Follicle-stimulating hormone receptor (FSHR) is an important G protein-coupled receptor, which is required for steroidogenesis, follicular development and female infertility. Here, we report a novel polymorphism in the 3'-UTR that strongly influences ovine FSHR mRNA decay. The partial 3'-UTR sequence of Hu sheep FSHR gene was isolated and characterized, and a polymorphism (c.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionr26usifcctuagmr5afha9amr4khmmg19): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once