J Phys Condens Matter
January 2015
The electronic structure and magnetic properties of GeTe-based dilute magnetic semiconductors (DMS) are investigated by the Korringa-Kohn-Rostoker Green's function method and the projector augmented wave method. Our calculations for the formation energies of transition metal impurities (TM) in GeTe indicate that the solubilities of TM are quite high compared to typical III-V and II-VI based DMS and that the TM doped GeTe has a possibility of room temperature ferromagnetism with high impurity concentrations. The high solubilities originate from the fact that the top of the valence bands of GeTe consists of the Te-5p anti-bonding states which are favorable to acceptor doping.
View Article and Find Full Text PDFElectrons mediate many of the interactions between atoms in a solid. Their propagation in a material determines its thermal, electrical, optical, magnetic and transport properties. Therefore, the constant energy contours characterizing the electrons, in particular the Fermi surface, have a prime impact on the behaviour of materials.
View Article and Find Full Text PDFJ Phys Condens Matter
July 2014
On the basis of constrained density functional theory, we present ab initio calculations for the Hubbard U parameter of transition metal impurities in dilute magnetic semiconductors, choosing Mn in GaN as an example. The calculations are performed by two methods: (i) the Korringa-Kohn-Rostoker (KKR) Green function method for a single Mn impurity in GaN and (ii) the full-potential linearized augmented plane-wave (FLAPW) method for a large supercell of GaN with a single Mn impurity in each cell. By changing the occupancy of the majority t2 gap state of Mn, we determine the U parameter either from the total energy differences E(N + 1) and E(N - 1) of the (N ± 1)-electron excited states with respect to the ground state energy E(N), or by using the single-particle energies for n(0) ± 1/2 occupancies around the charge-neutral occupancy n0 (Janak's transition state model).
View Article and Find Full Text PDFWe exploit the decoherence of electrons due to magnetic impurities, studied via weak localization, to resolve a long-standing question concerning the classic Kondo systems of Fe impurities in the noble metals gold and silver: which Kondo-type model yields a realistic description of the relevant multiple bands, spin, and orbital degrees of freedom? Previous studies suggest a fully screened spin S Kondo model, but the value of S remained ambiguous. We perform density functional theory calculations that suggest S=3/2. We also compare previous and new measurements of both the resistivity and decoherence rate in quasi-one-dimensional wires to numerical renormalization group predictions for S=1/2, 1, and 3/2, finding excellent agreement for S=3/2.
View Article and Find Full Text PDFThe Fermi surface that characterizes the electronic band structure of crystalline solids can be difficult to image experimentally in a way that reveals local variations. We show that Fermi surfaces can be imaged in real space with a low-temperature scanning tunneling microscope when subsurface point scatterers are present: in this case, cobalt impurities under a copper surface. Even the very simple Fermi surface of copper causes strongly anisotropic propagation characteristics of bulk electrons that are confined in beamlike paths on the nanoscale.
View Article and Find Full Text PDFThe parity of the number of atoms in finite antiferromagnetic nanowires deposited on ferromagnets is shown to be a crucial quantity determining their magnetic ground state. Relating results of the full-potential Korringa-Kohn-Rostoker method for noncollinear magnetism from first principles to a Heisenberg model, we show that the magnetic structure changes dramatically across the entire nanowire if one single atom is added to it. Infinite and finite even-numbered nanochains exhibit always noncollinear magnetism, while odd-numbered wires lead under given conditions to a collinear ferrimagnetic ground state.
View Article and Find Full Text PDFBy means of ab initio calculations we predict that it is possible to manipulate the magnetization direction in organic magnetic molecules by changing their oxidation state. We demonstrate this novel effect on the Eu2(C8H8)3 molecule, in which the hybridization of the outer pi ring states with the Eu 4f states causes a redistribution of the orbitals around the Fermi level leading to a strong ferromagnetism due to a hole-mediated exchange mechanism. As a key result, we predict an oscillatory behavior of the easy axis of the magnetization as a function of the oxidation state of the molecule-a new effect, which could lead to new technological applications.
View Article and Find Full Text PDFJ Phys Condens Matter
August 2007
A half-metal has been defined as a material with propagating electron states at the Fermi energy only for one of the two possible spin projections, and as such has been promoted as an interesting research direction for spin electronics. This review details recent advances on manganite thin film research within the field of spintronics, before presenting the structural, electronic and spin-polarized solid-state tunnelling transport studies that we have performed on heterostructures involving La(2/3)Sr(1/3)MnO(3) thin films separated by SrTiO(3) barriers. These experiments demonstrate that, with a polarization of spin [Formula: see text] electrons at the Fermi level that can reach 99%, the La(2/3)Sr(1/3)MnO(3)/SrTiO(3) interface for all practical purposes exhibits half-metallic behaviour.
View Article and Find Full Text PDFJ Electron Microsc (Tokyo)
March 2008
Using the state-of-the-art screened Korringa-Kohn-Rostoker Green function method we study the electronic and magnetic properties of NiMnSb and similar Heusler alloys. We show that all these compounds are half-metals, e.g.
View Article and Find Full Text PDFThe isotropic magnetic moment of a free atom is shown to develop giant magnetic anisotropy energy due to symmetry reduction at an atomically ordered surface. Single cobalt atoms deposited onto platinum (111) are found to have a magnetic anisotropy energy of 9 millielectron volts per atom arising from the combination of unquenched orbital moments (1.1 Bohr magnetons) and strong spin-orbit coupling induced by the platinum substrate.
View Article and Find Full Text PDFWe present ab initio calculations for orbital moments and anisotropy energies of 3d and 5d adatoms on the Ag(001) surface, based on density functional theory, including Brooks' orbital polarization (OP) term, and applying a fully relativistic Korringa-Kohn-Rostoker-Green's function method. In general, we find unusually large orbital moments and anisotropy energies, e.g.
View Article and Find Full Text PDFWe investigate the importance of metal-induced gap states for the tunneling of metal electrons through epitaxial insulator films. By introducing an imaginary part kappa to the wave vector in order to describe the decay of the wave function in the insulator, we obtain the complex band structure in the gap region. The spectrum of the decay parameters kappa is calculated for the semiconductors Si, Ge, GaAs, and ZnSe.
View Article and Find Full Text PDFPhys Rev B Condens Matter
November 1996
Phys Rev B Condens Matter
April 1996
Phys Rev B Condens Matter
January 1996
Phys Rev B Condens Matter
October 1995
Phys Rev B Condens Matter
September 1995
Phys Rev B Condens Matter
May 1995