Antifungal resistance in humans is a clinical reality of increasing incidence that raises problems for patient care. In this current event, we discuss the link that can be made between the presence of antifungals in the environment and the development of resistance in humans, as well as the ecotoxicology of antifungals. The presence of antifungals in the environment has a health, but also an ecological impact.
View Article and Find Full Text PDFBiological nitrogen fixation is a fundamental part of ecosystem functioning. Anthropogenic nitrogen deposition and climate change may, however, limit the competitive advantage of nitrogen-fixing plants, leading to reduced relative diversity of nitrogen-fixing plants. Yet, assessments of changes of nitrogen-fixing plant long-term community diversity are rare.
View Article and Find Full Text PDFDue to multiple land-cover changes, forest herb populations residing in forest patches embedded in agricultural landscapes display different ages and, thus, experience differences in genetic exchange, mutation accumulation and genetic drift. The extent of divergence in present-day population genetic structure among these populations of different ages remains unclear, considering their diverse breeding systems and associated pollinators. Answering this question is essential to understand these species' persistence, maintenance of evolutionary potential and adaptability to changing environments.
View Article and Find Full Text PDFPlant communities are being exposed to changing environmental conditions all around the globe, leading to alterations in plant diversity, community composition, and ecosystem functioning. For herbaceous understorey communities in temperate forests, responses to global change are postulated to be complex, due to the presence of a tree layer that modulates understorey responses to external pressures such as climate change and changes in atmospheric nitrogen deposition rates. Multiple investigative approaches have been put forward as tools to detect, quantify and predict understorey responses to these global-change drivers, including, among others, distributed resurvey studies and manipulative experiments.
View Article and Find Full Text PDFObjectives: To evaluate, in vivo, a recently developed imaging system (Aeva-HE™), based on fringe projection methodology: (i) its correlation with expert's assessments and real age of 85 French Caucasian women and (ii) its potential, as a screening tool, in rapidly selecting prototypes of tensile cosmetic products.
Materials And Methods: First, the bare faces of 85 differently aged French/Caucasian women were photographed under standard conditions and further analyzed by the Aeva-HE™ device. An expert aesthetician graded the severity of wrinkling on a fixed scale, helped by the use of a dedicated Skin Aging Atlas.
Background: The enemy release hypothesis (ERH) predicts that alien plant species are unsuitable hosts for native phytophagous insects. However, the biotic resistance hypothesis (BRH) predicts that generalist herbivores may prefer an alien plant over their common host plant. In this study, we have tested these two hypotheses by comparing the potential colonization of the invasive Pontic rhododendron (Rhododendron ponticum L.
View Article and Find Full Text PDFMany landscapes worldwide are characterized by the presence of a mosaic of forest patches with contrasting age and size embedded in a matrix of agricultural land. However, our understanding of the effects of these key forest patch features on the soil nutrient status (in terms of nitrogen, carbon, and phosphorus) and soil pH is still limited due to a lack of large-scale data. To address this research gap, we analyzed 830 soil samples from nearly 200 forest patches varying in age (recent versus ancient forests) and size (small versus larger patches) along a 2500-km latitudinal gradient across Europe.
View Article and Find Full Text PDFIntroduction: Traditional approaches to collecting large-scale biodiversity data pose huge logistical and technical challenges. We aimed to assess how a comparatively simple method based on sequencing environmental DNA (eDNA) characterises global variation in plant diversity and community composition compared with data derived from traditional plant inventory methods.
Methods: We sequenced a short fragment (P6 loop) of the chloroplast trnL intron from from 325 globally distributed soil samples and compared estimates of diversity and composition with those derived from traditional sources based on empirical (GBIF) or extrapolated plant distribution and diversity data.
Background: Aging signs are much visible on the surface of the skin that presents different changes: cheeks start to sag, more and deeper wrinkles appear, and pigmentation spots increase. Face diagnostic to recommend products includes assessing cutaneous micro-relief or the micro-depressive network on the face. Furthermore, there is an increasing demand for clinical and instrumental methods to prove the efficacy of anti-aging treatments.
View Article and Find Full Text PDFOur knowledge of microbial biogeography has advanced in recent years, yet we lack knowledge of the global diversity of some important functional groups. Here, we used environmental DNA from 327 globally collected soil samples to investigate the biodiversity patterns of nitrogen-fixing bacteria by focusing on the H gene but also amplifying the general prokaryotic 16S SSU region. Globally, N-fixing prokaryotic communities are driven mainly by climatic conditions, with most groups being positively correlated with stable hot or seasonally humid climates.
View Article and Find Full Text PDFUngulate populations are increasing across Europe with important implications for forest plant communities. Concurrently, atmospheric nitrogen (N) deposition continues to eutrophicate forests, threatening many rare, often more nutrient-efficient, plant species. These pressures may critically interact to shape biodiversity as in grassland and tundra systems, yet any potential interactions in forests remain poorly understood.
View Article and Find Full Text PDFGlob Ecol Biogeogr
September 2022
Classical theory identifies resource competition as the major structuring force of biotic communities and predicts that (i) levels of dominance and richness in communities are inversely related, (ii) narrow niches allow dense "packing" in niche space and thus promote diversity, and (iii) dominants are generalists with wide niches, such that locally abundant taxa also exhibit wide distributions. Current empirical support, however, is mixed. We tested these expectations using published data on arbuscular mycorrhizal (AM) fungal community composition worldwide.
View Article and Find Full Text PDFContext: Plant populations in agricultural landscapes are mostly fragmented and their functional connectivity often depends on seed and pollen dispersal by animals. However, little is known about how the interactions of seed and pollen dispersers with the agricultural matrix translate into gene flow among plant populations.
Objectives: We aimed to identify effects of the landscape structure on the genetic diversity within, and the genetic differentiation among, spatially isolated populations of three temperate forest herbs.
Arbuscular mycorrhizal (AM) fungi are a ubiquitous group of plant symbionts, yet processes underlying their global assembly - in particular the roles of dispersal limitation and historical drivers - remain poorly understood. Because earlier studies have reported niche conservatism in AM fungi, we hypothesized that variation in taxonomic community composition (i.e.
View Article and Find Full Text PDFSpecies turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe.
View Article and Find Full Text PDFForest microclimates contrast strongly with the climate outside forests. To fully understand and better predict how forests' biodiversity and functions relate to climate and climate change, microclimates need to be integrated into ecological research. Despite the potentially broad impact of microclimates on the response of forest ecosystems to global change, our understanding of how microclimates within and below tree canopies modulate biotic responses to global change at the species, community and ecosystem level is still limited.
View Article and Find Full Text PDFThe arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species-level phylogroups).
View Article and Find Full Text PDFSchall and Heinrichs question our interpretation that the climatic debt in understory plant communities is locally modulated by canopy buffering. However, our results clearly show that the discrepancy between microclimate warming rates and thermophilization rates is highest in forests where canopy cover was reduced, which suggests that the need for communities to respond to warming is highest in those forests.
View Article and Find Full Text PDFBertrand question our interpretation about warming effects on the thermophilization in forest plant communities and propose an alternative way to analyze climatic debt. We show that microclimate warming is a better predictor than macroclimate warming for studying forest plant community responses to warming. Their additional analyses do not affect or change our interpretations and conclusions.
View Article and Find Full Text PDFClimate warming is causing a shift in biological communities in favor of warm-affinity species (i.e., thermophilization).
View Article and Find Full Text PDF