Publications by authors named "Declerck S"

Arbuscular mycorrhizal (AM) fungi (e.g., Rhizophagus species) recruit specific bacterial species in their hyphosphere.

View Article and Find Full Text PDF
Article Synopsis
  • Rhizobia bacteria rely on root-derived signals from legumes to form nodules, but limited soil conditions can hinder their movement towards these signals.
  • The study investigates the role of arbuscular mycorrhizal fungi networks in facilitating this migration by acting as a dispersal pathway, helping rhizobia reach legume roots more effectively.
  • Findings showed that the fungus Rhizophagus irregularis enhances the movement of the rhizobia Shinorhizobium meliloti towards Medicago truncatula, leading to successful nodulation, which wouldn't occur without the presence of the mycorrhizal fungus.
View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF) are totally dependent on a suitable host plant for their carbon resources. Here, we investigated under in vitro conditions, the impact of defoliation practices, i.e.

View Article and Find Full Text PDF

Background: Fungi and bacteria coexist in a wide variety of environments, and their interactions are now recognized as the norm in most agroecosystems. These microbial communities harbor keystone taxa, which facilitate connectivity between fungal and bacterial communities, influencing their composition and functions. The roots of most plants are associated with arbuscular mycorrhizal (AM) fungi, which develop dense networks of hyphae in the soil.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF) form symbiotic associations with the majority of land plants and deliver a wide range of soil-based ecosystem services. Due to their conspicuous belowground lifestyle in a dark environment surrounded by soil particles, much is still to be learned about the influence of environmental (, physical) cues on spore germination, hyphal morphogenesis and anastomosis/hyphal healing mechanisms. To fill existing gaps in AMF knowledge, we developed a new microfluidic platform - the - to visualise the foraging behaviour of germinating and spores and confront asymbiotic hyphae with physical obstacles.

View Article and Find Full Text PDF

Endophytic fungi as well as arbuscular mycorrhizal fungi (AMF) are known to stimulate plant growth and production of secondary metabolites in medicinal plants. Here, 10 endophytic fungi isolated from roots of wild Alkanna tinctoria plants and 5 AMF purchased from the Glomeromycota in vitro collection were evaluated, during two successive three-month greenhouse experiments, on the growth of Echium vulgare and alkannin/shikonin and their derivatives (A/Sd) production in the roots. Some of the endophytic fungi tested significantly increased plant growth parameters as compared to the control: Cladosporium allicinum, Cadophora sp.

View Article and Find Full Text PDF

Characterising the extent and sources of intraspecific variation and their ecological consequences is a central challenge in the study of eco-evolutionary dynamics. Ecological stoichiometry, which uses elemental variation of organisms and their environment to understand ecosystem patterns and processes, can be a powerful framework for characterising eco-evolutionary dynamics. However, the current emphasis on the relative content of elements in the body (i.

View Article and Find Full Text PDF

Winter wheat is an important cereal consumed worldwide. However, current management practices involving chemical fertilizers, irrigation, and intensive tillage may have negative impacts on the environment. Conservation agriculture is often presented as a sustainable alternative to maintain wheat production, favoring the beneficial microbiome.

View Article and Find Full Text PDF

Introduction: Tausch. is a medicinal plant well-known to produce important therapeutic compounds, such as alkannin/shikonin and their derivatives (A/Sd). It associates with arbuscular mycorrhizal fungi (AMF), which are known, amongst others beneficial effects, to modulate the plant secondary metabolites (SMs) biosynthesis.

View Article and Find Full Text PDF

Background: Microbial culture collections play a key role in taxonomy by studying the diversity of their strains and providing well-characterized biological material to the scientific community for fundamental and applied research. These microbial resource centers thus need to implement new standards in species delineation, including whole-genome sequencing and phylogenomics. In this context, the genomic needs of the Belgian Coordinated Collections of Microorganisms were studied, resulting in the GEN-ERA toolbox.

View Article and Find Full Text PDF

Land-water transition areas play a significant role in the functioning of aquatic ecosystems. However, anthropogenic pressures are posing severe threats on land-water transition areas, which leads to degradation of the ecological integrity of many lakes worldwide. Enhancing habitat complexity and heterogeneity by restoring land-water transition areas in lake systems is deemed a suitable method to restore lakes bottom-up by stimulating lower trophic levels.

View Article and Find Full Text PDF

Arbuscular mycorrhizal (AM) fungi play key roles in soil fertility of agroecosystems. They develop dense extraradical mycelial (ERM) networks via mechanisms such as hyphal anastomosis. These connections between hyphae can be affected by agricultural practices such as the use of fungicides, but how these compounds affect anastomosis formation within and more importantly between networks of the same AM fungal strain remains poorly unexplored.

View Article and Find Full Text PDF

Arbuscular mycorrhizal (AM) fungi form a continuum between roots and soil. One end of this continuum is comprised of the highly intimate plant-fungus interface with intracellular organelles for nutrient exchange, while on the other end the fungus interacts with bacteria to compensate for the AM fungus' inability to take up organic nutrients from soil. How both interfaces communicate in this highly complex tripartite mutualism is widely unknown.

View Article and Find Full Text PDF

Alkannin/shikonin and their derivatives are specialised metabolites of high pharmaceutical and ecological importance exclusively produced in the periderm of members of the plant family Boraginaceae. Previous studies have shown that their biosynthesis is induced in response to methyl jasmonate but not salicylic acid, two phytohormones that play important roles in plant defence. However, mechanistic understanding of induction and non-induction remains largely unknown.

View Article and Find Full Text PDF

Bacteria influence plant growth and development and therefore are attractive resources for applications in agriculture. However, little is known about the impact of these microorganisms on secondary metabolite (SM) production by medicinal plants. Here we assessed, for the first time, the effects of bacteria on the modulation of SM production in the medicinal plant (Boraginaceae family) with a focus on the naphthoquinones alkannin/shikonin and their derivatives (A/Sd).

View Article and Find Full Text PDF

Plants are colonized by a wide range of bacteria, several of which are known to confer benefits to their hosts such as enhancing plant growth and the biosynthesis of secondary metabolites (SMs). Recently, it has been shown that sp. strain R-73072 enhances the production of alkannin/shikonin, SMs of pharmaceutical and ecological importance.

View Article and Find Full Text PDF

Plants are naturally associated with diverse microbial communities, which play significant roles in plant performance, such as growth promotion or fending off pathogens. The roots of L. are rich in naphthoquinones, particularly the medicinally used enantiomers alkannin and shikonin and their derivatives.

View Article and Find Full Text PDF

The growth rate hypothesis (GRH) posits that the relative body phosphorus content of an organism is positively related to somatic growth rate, as protein synthesis, which is necessary for growth, requires P-rich rRNA. This hypothesis has strong support at the interspecific level. Here, we explore the use of the GRH to predict microevolutionary responses in consumer body stoichiometry.

View Article and Find Full Text PDF

This review highlights new advances in the emerging field of 'Fungi-on-a-Chip' microfluidics for single-cell studies on fungi and discusses several future frontiers, where we envisage microfluidic technology development to be instrumental in aiding our understanding of fungal biology. Fungi, with their enormous diversity, bear essential roles both in nature and our everyday lives. They inhabit a range of ecosystems, such as soil, where they are involved in organic matter degradation and bioremediation processes.

View Article and Find Full Text PDF

(L.) interacts with various microorganisms including arbuscular mycorrhizal fungi (AMF). Recently, the AMF MUCL 41833 has been shown to modulate the metabolome of .

View Article and Find Full Text PDF

Microbial inoculants containing arbuscular mycorrhizal (AM) fungi are potential tools in increasing the sustainability of our food production systems. Given the demand for sustainable agriculture, the production of such inoculants has potential economic value and has resulted in a variety of commercial inoculants currently being advertised. However, their use is limited by inconsistent product efficacy and lack of consumer confidence.

View Article and Find Full Text PDF

Medicinal plants are an important source of therapeutic compounds used in the treatment of many diseases since ancient times. Interestingly, they form associations with numerous microorganisms developing as endophytes or symbionts in different parts of the plants. Within the soil, arbuscular mycorrhizal fungi (AMF) are the most prevalent symbiotic microorganisms forming associations with more than 70% of vascular plants.

View Article and Find Full Text PDF

The chemical quality of soil carbon (C) inputs is a major factor controlling litter decomposition and soil C dynamics. Mycorrhizal fungi constitute one of the dominant pools of soil microbial C, while their litter quality (chemical proxies of litter decomposability) is understood poorly, leading to major uncertainties in estimating soil C dynamics. We examined litter decomposability of arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungal species using samples obtained from in vitro cultivation.

View Article and Find Full Text PDF

The nomenclatural type material of (basionym ) was originally described from a trap pot culture established with root fragments, subcultures of which later became registered in the INVAM culture collection as FL 208. Subcultures of FL 208 (designated as strain ATT 4) and a new strain, independently isolated from the type location (ATT 1102), were established as both pot cultures with soil-like substrate and root organ culture. Long-term sampling of these cultures shows spores of the species to have considerable morphological plasticity, not described in the original description.

View Article and Find Full Text PDF