Fabry-Perot interferometers (FPIs), comprising foundry-compatible dielectric thin films on sapphire wafer substrates, were investigated for possible use in chemical sensing. Specifically, structures comprising two vertically stacked distributed Bragg reflectors (DBRs), with the lower DBR between a sapphire substrate and a silicon-oxide (SiO) resonator layer and the other DBR on top of this resonator layer, were investigated for operation in the near-ultraviolet (near-UV) range. The DBRs are composed of a stack of nitride-rich silicon-nitride (SiN) layers for the higher index and SiO layers for the lower index.
View Article and Find Full Text PDFMicroscale gas chromatographs (μGCs) promise in-field analysis of volatile organic compounds (VOCs) in environmental and industrial monitoring, healthcare, and homeland security applications. As a step toward addressing challenges with performance and manufacturability, this study reports a highly integrated monolithic chip implementing a multisensing progressive cellular architecture. This architecture incorporates three μGC cells that are customized for different ranges of analyte volatility; each cell includes a preconcentrator and separation column, two complementary capacitive detectors, and a photoionization detector (PID).
View Article and Find Full Text PDF