Brown adipose tissue (BAT) is able to rapidly generate heat and metabolise macronutrients, such as glucose and lipids, through activation of mitochondrial uncoupling protein 1 (UCP1). Diet can modulate UCP1 function but the capacity of individual nutrients to promote the abundance and activity of UCP1 is not well established. Caffeine consumption has been associated with loss of body weight and increased energy expenditure, but whether it can activate UCP1 is unknown.
View Article and Find Full Text PDFWe had previously shown that alcohol consumption can induce cellular isoaspartate protein damage via an impairment of the activity of protein isoaspartyl methyltransferase (PIMT), an enzyme that triggers repair of isoaspartate protein damage. To further investigate the mechanism of isoaspartate accumulation, hepatocytes cultured from control or 4-week ethanol-fed rats were incubated in vitro with tubercidin or adenosine. Both these agents, known to elevate intracellular S-adenosylhomocysteine levels, increased cellular isoaspartate damage over that recorded following ethanol consumption in vivo.
View Article and Find Full Text PDFChronic excessive alcohol intoxications evoke cumulative damage to tissues and organs. We examined prefrontal cortex (Brodmann's area (BA) 9) from 20 human alcoholics and 20 age, gender, and postmortem delay matched control subjects. H & E staining and light microscopy of prefrontal cortex tissue revealed a reduction in the levels of cytoskeleton surrounding the nuclei of cortical and subcortical neurons, and a disruption of subcortical neuron patterning in alcoholic subjects.
View Article and Find Full Text PDFAbnormal α-synuclein aggregates are hallmarks of a number of neurodegenerative diseases. Alpha synuclein and β-synucleins are susceptible to post-translational modification as isoaspartate protein damage, which is regulated in vivo by the action of the repair enzyme protein L-isoaspartyl O-methyltransferase (PIMT). We aged in vitro native α-synuclein, the α-synuclein familial mutants A30P and A53T that give rise to Parkinsonian phenotypes, and β-synuclein, at physiological pH and temperature for a time course of up to 20 days.
View Article and Find Full Text PDF