Research on multifunctional luminescent materials has become an emerging trend for new applications of optical sensing, monitoring, anticounterfeiting, lighting, etc. Herein, a library of Pr-doped MY(PO) (M = Ba, Sr, Ca) phosphors was prepared for careful spectroscopic studies in potential lighting and optical temperature sensing applications. With the help of density functional theory calculation, diffuse reflectance spectra, and steady/dynamic photoluminescence spectra, the effects of alkaline earth metals on the fluorescence properties of MY(PO):Pr were studied systematically.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Carbon quantum dots (CQDs) with fluorescence emission have been widely studied for versatile applications, but facile tunability of the spectral properties of CQDs by doping remains to be further explored. Herein, employing lanthanide ion Eu as a dopant and activator, a simple and efficient synthesis route for pure CQDs and Eu-CQDs was demonstrated using N, N-dimethylformamide, oleic acid, and oleylamine as precursors for carbon sources. In comparison, with the popular citric acid precursor, the as-prepared CQDs and Eu-CQDs exhibited an obviously smaller particle size (1.
View Article and Find Full Text PDFThe use of lanthanide luminescence has advanced the field of remote temperature sensing. Luminescence intensity ratio methods relying on emission from two thermally coupled energy levels are popular but suffer from a limited temperature range. Here, we present a versatile luminescent thermometer: Ba(Sr)FBr(Cl):Sm.
View Article and Find Full Text PDFThe primary challenge for resonant-gravimetric gas sensors is the synchronous improvement of the sensitivity and response time, which is restricted by low adsorption capacity and slow mass transfer in the sensing process and remains a great challenge. In this study, a novel 2D/2D Cu-TCPP@ZnInS composite is successfully constructed, in which Cu-TCPP MOF is used as a core substrate for the growth of 2D ultrathin ZnInS nanosheets with well-defined {0001} crystalline facets. The Cu-TCPP@ZnInS sensor exhibited high sensitivity (1.
View Article and Find Full Text PDFIn this paper, LaCeO powders co-activated by Ho and Yb were synthesized by a high temperature solid-state reaction. Both Ho and Yb substitute the La sites in the LaCeO lattice, where the Ho concentration is 0.5 at.
View Article and Find Full Text PDFBroadband short-wave near-infrared (NIR) phosphor-converted light-emitting diodes (-LEDs) have been attracting keen interest for miniature NIR spectroscopy, while still lacking sufficient novel broadband NIR-emitting phosphors. Herein, we report a novel MgNbO:Cr polycrystalline phosphor with a broad NIR emission band centered at 970 nm and a large full-width at half-maximum of approximately 155 nm under excitation of bluish-green light at around 515 nm. The optimized phosphor MgNbO:1%Cr features a high internal quantum efficiency (IQE) of ∼85.
View Article and Find Full Text PDFDevelopment of novel ultraviolet (UV) upconversion materials has been emerging as a hot research topic for application in tunable UV lasers, photocatalysis, sterilization, tagging, and most recently luminescence thermometry. We readily synthesized a series of Ho/Gd co-doped LiYO upconversion phosphors by a traditional high-temperature reaction. Under excitation from a blue ∼445 nm laser, LiYO:Ho,Gd polycrystalline powders yield intense sharp ultraviolet B (UVB) upconversion luminescence from GdP ( = 7/2, 5/2, 3/2) excited states.
View Article and Find Full Text PDFBiVO has been widely used in the field of photocatalysis due to its nontoxic and moderate band gap. However, single BiVO has the disadvantages of a high recombination rate of photogenerated carriers and weak response to visible light, inhibiting its photocatalytic applications. To explore viable solutions, a hybrid material composed of lanthanum-doped bismuth vanadate (La-BiVO) and oxygen-doped porous graphite carbon nitride (O-doped g-CN), i.
View Article and Find Full Text PDFThe degradation of aflatoxin (AF) is a topic that always exists along with the food and feed industry. Photocatalytic degradation as an advanced oxidation technology has many benefits, including complete inorganic degradation, no secondary contamination, ease of activity under moderate conditions, and low cost compared with traditional physical, chemical, and biological strategies. However, photocatalysts are usually dispersed during photocatalytic reactions, resulting in energy and time consumption in the separation process.
View Article and Find Full Text PDFAntiangiogenesis therapies targeting vascular endothelial growth factor (VEGF) have revolutionized the treatment of neovascular ocular diseases, including neovascular age-related macular degeneration (nAMD). Compelling evidence has implicated the vital role of complement system dysregulation in AMD pathogenesis, implying it as a potential therapeutic strategy for geographic atrophy in dry AMD and to enhance the efficacy of anti-VEGF monotherapies in nAMD. This study reports the preclinical assessment and phase 1 clinical outcomes of a bispecific fusion protein, efdamrofusp alfa (code: IBI302), which is capable of neutralizing both VEGF isoforms and C3b/C4b.
View Article and Find Full Text PDFRatiometric luminescence thermometry with trivalent lanthanide ions and their 4f energy levels is an emerging technique for non-invasive remote temperature sensing with high spatial and temporal resolution. Conventional ratiometric luminescence thermometry often relies on thermal coupling between two closely lying energy levels governed by Boltzmann's law. Despite its simplicity, Boltzmann thermometry with two excited levels allows precise temperature sensing, but only within a limited temperature range.
View Article and Find Full Text PDFDexamethasone (Dex), as a pretreatment agent, is widely used to attenuate the side effects of chemotherapy in breast cancer treatment. However, whether and how Dex affects breast cancer metastasis remain to be furtherly understood. In this study, we established several mouse breast cancer metastatic models to study the effect of Dex in vitro and in vivo.
View Article and Find Full Text PDFIntroduction: The aim of the study was to evaluate the protective effects of IBI302, a bispecific Fc-fusion protein that theoretically can bind vascular endothelial growth factor (VEGF), complement C3b, and C4b in the barrier of the cultured human retinal pigment epithelial (hRPE) cells.
Methods: Primary hRPE cells were isolated and cultured to monolayer barrier. hRPE monolayers were divided into the PBS control group, VEGF-Trap group, complement receptor 1 (CR1) group, and IBI302 group.
The basic leucine zipper ATF-like transcription factor 2 (BATF2) has been implicated in inflammatory responses and anti-tumour effects. Little, however, is known regarding its extracellular role in maintaining a non-supportive cancer microenvironment. Here, we show that BATF2 inhibits glioma growth and myeloid-derived suppressor cells (MDSCs) recruitment.
View Article and Find Full Text PDFPaclitaxel (PTX) has shown pleiotropic immunologic effects on the tumor microenvironment, and nanomicelle has emerged as a promising strategy for PTX delivery. However, the detailed mechanisms remain to be fully elucidated. Meanwhile, immunogenic cell death (ICD) is an effective approach to activate the immune system.
View Article and Find Full Text PDFLanthanide-based photon-cutting phosphors absorb high-energy photons and 'cut' them into multiple smaller excitation quanta. These quanta are subsequently emitted, resulting in photon-conversion efficiencies exceeding unity. The photon-cutting process relies on energy transfer between optically active lanthanide ions doped in the phosphor.
View Article and Find Full Text PDFFollowing publication of the original article [1], the authors reported an error in Fig 5 of this article, graphs presenting FCM and immunofluorescent for CD4T, CD8T and NK cell of the Control Groups (LL2, LL2-irradation, MCS-irradiation) were inadvertently duplicated from another parallel experiment.
View Article and Find Full Text PDFTherapeutic antibodies targeting vascular endothelial growth factor (VEGF) have become a critical regimen for tumor therapy, but the efficacy of monotherapy is usually limited by drug resistance and multiple angiogenic mechanisms. Complement proteins are becoming potential candidates for cancer-targeted therapy based on their role in promoting cancer progression and angiogenesis. However, the antitumor abilities of simultaneous VEGF and complement blockade were unknown.
View Article and Find Full Text PDFACS Appl Electron Mater
November 2019
Emerging phototherapy in a clinic and plant photomorphogenesis call for efficient red/far-red light resources to target and/or actuate the interaction of light and living organisms. Rare-earth-doped phosphors are generally promising candidates for efficient light-emitting diodes but still bear lower quantum yield for the far-red components, potential supply risks, and high-cost issues. Thus, the design and preparation of efficient non-rare-earth activated phosphors becomes extremely important and arouses great interest.
View Article and Find Full Text PDF